Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 34-40    DOI: 10.11868/j.issn.1001-4381.2017.001098
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
骨组织工程用硅胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能研究
秦晓素, 黄洁, 郭华超, 杨泽斌, 陈庆华, 颜廷亭
昆明理工大学 材料科学与工程学院, 昆明 650500
Fabrication and Properties of Silica Gel/Calcium Sulfate/Strontium-doped β-tricalcium Phosphate Composite Porous Scaffolds for Bone Tissue Engineering
QIN Xiao-su, HUANG Jie, GUO Hua-chao, YANG Ze-bin, CHEN Qing-hua, YAN Ting-ting
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(2504 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以掺锶β-磷酸三钙/硫酸钙为原料,利用搅拌喷雾干燥法制备出掺锶β-磷酸三钙/硫酸钙复合小球,再将硅胶与制备的复合小球复合,通过在模具中堆垛聚集的方法,制备出硅胶/掺锶β-磷酸三钙/硫酸钙复合生物支架。采用XRD,SEM,FT-IR等方法分析制得复合多孔支架的成分、形貌以及结构特征,并研究复合生物支架的降解性、孔隙率、力学性能和细胞毒性等。结果表明:该复合多孔生物支架具有一定的不规则孔洞结构,小球与小球之间的孔隙约为0.2~1mm,而每个小球上也有大量的微孔,孔径在50~200μm之间,且平均孔隙率达到62%,基本能满足骨组织工程支架对孔隙率的要求;该复合多孔支架无细胞毒性,其降解周期约为80天,抗压强度约为0.1MPa,因此该支架在非承重骨组织修复方面具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦晓素
黄洁
郭华超
杨泽斌
陈庆华
颜廷亭
关键词 硅胶掺锶β-磷酸三钙硫酸钙复合小球多孔支架    
Abstract:The calcium sulfate/strontium-doped β-tricalcium phosphate composite spherical pellets was fabricated, using the calcium sulfate/strontium-doped β-TCP as raw material, and through the stirring spray drying method, and then composite spherical pellets were combined with silica gel, porous silica gel/calcium sulfate/strontium-doped β-tricalcium phosphate scaffold was obtained by stacking aggregation method in the mould. The XRD, SEM and FT-IR, etc are employed to examine the chemical composition, composite morphology and structure characteristics, and the degradability, porosity, mechanical properties and cytotoxicity of the scaffolds materials were studied. The results reveal that the composite porous scaffolds have irregular pore structure with pore size between 0.2-1.0mm, and they have a large number of micropores on each of the composite spherical pellets, with the aperture between 50-200μm. Moreover, the porosity of the composite scaffolds is about 62%, which can meet the requirements of scaffolds for bone tissue engineering in porosity; the cytotoxicity tests show the composite scaffolds have no cytotoxic effect and it has good degradation. Therefore, it has good application prospect in bone tissue engineering of the bone defect repair of non-bearing site.
Key wordssilica gel    strontium-doped β-tricalcium phosphate    calcium sulfate    composite spherical pellet    porous scaffold
收稿日期: 2017-08-31      出版日期: 2018-03-20
中图分类号:  TB321  
基金资助: 
通讯作者: 颜廷亭(1983-),男,博士,副教授,硕士生导师,主要研究方向为生物医用材料的研究,联系地址:云南省昆明市五华区学府路昆明理工大学莲花校区主楼802(650093),E-mail:itty@foxmail.com     E-mail: itty@foxmail.com
引用本文:   
秦晓素, 黄洁, 郭华超, 杨泽斌, 陈庆华, 颜廷亭. 骨组织工程用硅胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能研究[J]. 材料工程, 2018, 46(3): 34-40.
QIN Xiao-su, HUANG Jie, GUO Hua-chao, YANG Ze-bin, CHEN Qing-hua, YAN Ting-ting. Fabrication and Properties of Silica Gel/Calcium Sulfate/Strontium-doped β-tricalcium Phosphate Composite Porous Scaffolds for Bone Tissue Engineering. Journal of Materials Engineering, 2018, 46(3): 34-40.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001098      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/34
[1] LOZANO R, NAGHAVI M, FOREMAN K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010:a systematic analysis for the global burden of disease study 2010[J]. The Lancet, 2013, 380(9859):2095-2128.
[2] 卢陈佩, 王旭东, 沈国芳. 生物陶瓷在骨组织工程中的应用进展[J]. 中国组织工程研究, 2017, 21(22):3576-3582. LU C P, WANG X D, SHEN G F. Bioceramics in bone tissue engineering[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(22):3576-3582.
[3] MASCARENHAS R, MACDONALD P B. Anterior cruciate ligament reconstruction:a look at prosthetics-past, present and possible future[J]. McGill Journal of Medicine, 2008, 11(1):29-37.
[4] 王臻, 梁戈, 殷琦,等. 肢体大块骨缺损的大段同种异体骨关节移植[J]. 中华外科杂志, 1997, 35(4):200-203. WANG Z, LIANG G,YIN Q,et al. Limb salvage surgery using massive allografts in malignant bone tumors[J]. Chinese Journal of Surgery, 1997, 35(4):200-203.
[5] LUO Z, DENG Y, ZHANG R, et al. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering[J]. Colloids and Surfaces B:Biointerfaces, 2015, 131:73-82.
[6] SARⅡBRAHIMOGLU K, WOLKE J G C, LEEUWENBURGH S C G, et al. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute[J].Key Engineering Materials, 2013, 529/530:157-160.
[7] SUGAWARA A, ASAOKA K, DING S J. Calcium phosphate-based cements:clinical needs and recent progress[J]. Journal of Materials Chemistry B, 2013, 1(8):1081-1089.
[8] 焦永峰, 赵磊. 生物陶瓷材料的研究进展[J]. 江苏陶瓷, 2008,41(2):7-9. JIAO Y F, ZHAO L. The development and current status of bioceramics[J]. Jiangsu Ceramics, 2008, 41(2):7-9.
[9] 杨为中, 周大利, 尹光福, 等. 骨组织工程支架材料磷酸钙双相生物陶瓷的研究进展[J]. 硅酸盐学报, 2004, 32(9):1143-1149. YANG W Z, ZHOU D L, YIN G F, et al.Progress of biphasic calcium phosphate bioceramic as scaffold materials of bone tissue engineering[J]. Journal of the Chinese Ceramic Society, 2004, 32(9):1143-1149.
[10] CHEM F, LI S, YAN Y. Effect of TCP material on PH value inside and outside phagocytes by using nanometric microelectrode[J]. Bioceramics, 1996, 9:209-212.
[11] GIANNOUDIS P V, DINOPOULOS H, TSIRIDIS E. Bone substitutes:an update[J]. Injure, 2005, 36(3):20-27.
[12] 倪国新, 黄国涛, 姚志鹏, 等. 含锶羟基磷灰石浸提液诱导骨髓基质干细胞成骨分化的研究[J]. 中华创伤骨科杂志, 2010,12(11):1060-1064. NI G X, HUANG G T, YAO Z P, et al. The effect of strontium incoporated with hydroxyapatite on osteoblastic differentiation of bone masenchymal stromal cells[J]. Chinese Journal of Orthopaedic Trauma, 2010,12(11):1060-1064.
[13] LEHMANN G, CACCIONTTI I, PALMERO P, et al. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites[J]. Biomedical Materials, 2012, 7(5):055001.
[14] IBRAHIM S, SABUDIN S, SAHID S, et al. Bioactivity studies and adhesion of human osteoblast (hFOB) on silicon-biphasic calcium phosphate material[J]. Saudi Journal of Biological Sciences, 2016, 23(1):S56-S63.
[15] 张建设, 雷士泽, 李晨军, 等. 掺铝β-磷酸三钙及掺锶β-磷酸三钙植入兔骨缺损区形态及组织学观察[J]. 实用口腔医学杂志, 2002, 18(1):65-67. ZHANG J S, LEI S Z, LI C J, et al. A histological study on experimental implantation of β-tricalcium phosphate in rabbit mandi-ble[J]. Journal of Practical Stomatology, 2002, 18(1):65-67.
[16] TURNER T M, URBAN R M, SINGH K, et al. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model[J]. The Spine Journal, 2008, 8(3):482-487.
[17] KHAN Y, YASZEMSKI M J, MIKOS A G, et al. Tissue engineering of bone:material and matrix considerations[J]. The Journal of Bone & Joint Surgery, 2008, 90(Suppl 1):36-42.
[18] RAVAINE D, SEMINEL A, CHARBOUILLOT Y, et al. A new family of organically modified silicates prepared from gels[J]. Journal of Non-Crystalline Solids, 1986, 82(1):210-219.
[19] MOTOMASTU M, NIE H Y, MIZUTANI W, et al. Microstructure study of acrylic polymer-silica nanocomposite surface by scanning force microscopy[J]. Polymer, 1997, 38(1):177-182.
[20] HAN P, WU C, XIAO Y. The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells[J]. Biomaterials Science, 2013, 1(4):379-392.
[21] DONG K Y. A study of optothermal and cytotoxic properties of silica coated Au nanorods[J]. Mater Lett,2011, 65(15/16):2319-2321.
[22] LUO Z Y, DENG Y, ZHANG R R, et al. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering[J]. Colloid & Surface:Biointerfaces, 2015, 131:73-82.
[23] HUTMACHER D W. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives[J]. Journal of Biomaterials Science (Polymer Edition), 2001, 12(1):107-124.
[24] KIM D H, KIM K L, CHUM H H, et al. In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure[J]. Ceramics International, 2014, 40(6):8293-8300.
[1] 胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
[2] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[3] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[4] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[5] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[6] 韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
[7] 陈敬炎, 吴甲民, 陈安南, 肖欢, 李国锐, 刘梦月, 李晨辉, 史玉升. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46(7): 36-43.
[8] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
[9] 钟云娇, 边文凤. PAN基碳纤维微晶结构对拉伸强度的影响[J]. 材料工程, 2017, 45(12): 37-42.
[10] 宋磊, 陈纪强, 范汶鑫, 王成国. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45(11): 15-22.
[11] 崔贺帅, 郑彧, 刘杏娥, 杨淑敏, 田根林, 马建锋. 生物质基SiC陶瓷制备的研究进展[J]. 材料工程, 2017, 45(8): 115-122.
[12] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[13] 谈玲华, 徐建华, 寇波, 杭祖圣, 石丽丽, 王钧. g-C3N4/NiO复合材料的制备及其对AP热分解的影响[J]. 材料工程, 2016, 44(11): 96-100.
[14] 李雅琳, 张健, 平清伟, 牛梅红, 石海强, 李娜. 硅藻土基无机抗菌材料的制备与性能[J]. 材料工程, 2016, 44(3): 72-76.
[15] 鲍艳, 张永辉, 马建中. 溶液法制备ZnO纳米阵列的影响因素及光催化活性[J]. 材料工程, 2015, 43(8): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn