Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 98-104    DOI: 10.11868/j.issn.1001-4381.2017.001122
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
稀土元素对原位合成TiB2/Al复合材料组织和性能的影响
屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园
北方工业大学 机械与材料工程学院 北京 100144
Effect of Rare Earth Element on Microstructure and Properties of in situ Synthesized TiB2/Al Composites
QU Min, LIU Xin, CUI Yan, LIU Feng-bin, JIAO Zhi-wei, LIU Yuan
School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China
全文: PDF(3928 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用原位合成法研究稀土元素Ce,Sc,Er对TiB2/Al复合材料TiB2颗粒和基体组织的影响,并对复合材料的拉伸性能进行分析。结果表明,稀土元素的添加显著改善了复合材料的组织和性能。添加0.3%(质量分数)Sc和Er的复合材料的TiB2颗粒分布相对均匀,稀土元素Er对基体合金的组织细化效果最显著,其次是Sc。添加稀土Sc和Er元素的复合材料拉伸强度较好,分别提高了32%和31%,添加稀土Er元素的复合材料伸长率最佳,提高了85%,因此,其拉伸性能也最佳。添加稀土元素Sc和Er后,复合材料的断裂形式为微孔聚集型的韧性断裂。稀土元素对复合材料的作用机理表现在两方面:一是稀土元素的添加改善了复合材料的润湿性,并抑制了TiB2颗粒的团聚;另一方面,稀土元素的添加使得基体合金组织细化,从而提高了复合材料的拉伸强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈敏
刘鑫
崔岩
刘峰斌
焦志伟
刘园
关键词 稀土元素TiB2/Al复合材料微观组织拉伸性能润湿性    
Abstract:The effect of rare earth element Ce, Sc and Er on TiB2 particles and matrix alloy micros-tructure of TiB2/Al composites was studied with in situ synthesis method. It shows that the addition of rare earth element improves the microstructure and properties of TiB2/Al composites notably. The particles of TiB2 are relatively homogenously distributed as adding 0.3% (mass fraction) rare earth element Sc and Er, moreover, it is Er that refines the microstructure of matrix alloy most significantly, then is Sc. Similarly, it is demonstrated that the addition of Sc and Er results in better tensile strength, which is enhanced by 32% and 31%, respectively; the addition of Er also leads to the best ductility by 85% with optimal tensile property. Meanwhile, fracture morphology analysis reveals that the fracture of the composites is microporous gathered ductile fracture when adding Sc and Er. Finally, it is verified that the mechanism of rare earth element on composites lies in two aspects:one is that the addition of rare earth element improves the wettability of the composites and suppresses the agglomeration of TiB2 particles; the other is that the addition of rare earth element refines the microstructure of matrix alloy and then improves the tensile strength of the composites.
Key wordsrare earth element    TiB2/Al composites    microstructure    tensile property    wettability
收稿日期: 2017-09-06      出版日期: 2018-03-20
中图分类号:  TG146.2  
基金资助: 
通讯作者: 屈敏(1981-),女,讲师,博士,从事电子封装材料的制备研究工作,联系地址:北京市石景山区晋元庄路5号北方工业大学机械与材料工程学院(100144),E-mail:minqu@ncut.edu.cn     E-mail: minqu@ncut.edu.cn
引用本文:   
屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
QU Min, LIU Xin, CUI Yan, LIU Feng-bin, JIAO Zhi-wei, LIU Yuan. Effect of Rare Earth Element on Microstructure and Properties of in situ Synthesized TiB2/Al Composites. Journal of Materials Engineering, 2018, 46(3): 98-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001122      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/98
[1] TSUKAMOTO H. A mean-field micromechanical model of thermal ratcheting behavior in short fiber-reinforced metal matrix composites[J]. Acta Mater, 2012, 60:3709-3717.
[2] XUAN Q Q, SHU S L, QIU F, et al. Different strain-rate dependent compressive properties and work-hardening capacities of 50vol% TiCx/Al and TiB2/Al composites[J]. Mater Sci Eng:A, 2012, 529:335-339.
[3] 王常川, 王日初, 彭超群,等. 金属基固体自润滑复合材料的研究进展[J].中国有色金属学报, 2012, 7(22):1945-1952. WANG C C,WANG R C,PENG C Q, et al. Research progress of metallic solid selflubricating composites[J]. Chi J Nonf Metals, 2012, 7(22):1945-1952.
[4] DAS B, ROY S, RAI R N, et al. Application of grey fuzzy logic for the optimization of CNC milling parameters for Al-4.5%Cu-TiC MMCs with multi-performance characteristics[J]. Eng Sci Tech, 2016, 19(2):857-865.
[5] 杨朋军,李良,雷志强,等. SiC/Al铝基复合材料在惯性器件上的应用研究[J]. 导航定位与授时, 2016, 3:63-66. YANG P J, LI L, LEI Z Q, et al. Research on the application of SiC/Al composite material on inertial device[J].Navig Posit Timi, 2016, 3:63-66.
[6] PARAMSOTHYA M, NGUYENA Q B, TUNA K S, et al. Mechanical property retention in remelted microparticle to nanoparticle AZ31/Al2O3 composites[J]. J Alloys Comp, 2010, 506:600-606.
[7] BHARATH V, NAGARAL M, AURADI V, et al. Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties[J]. Pro Mater Sci, 2014, 6:1658-1667.
[8] SINGH R, DUREJA J S, FARINA I, et al. Investigations for dimensional accuracy of Al alloy/Al-MMC developed by combining stir casting and ABS replica based investment casting[J]. Comp Part B:Eng, 2017,115:203-208.
[9] RAJESH S, KRISHNA A, RAJU P. R, et al. Statistical analysis of dry sliding wear behavior of graphite reinforced aluminum MMCs[J]. Pro Mater Sci, 2014, 6:1110-1120.
[10] EKICIA R, APALAK M K, YILDIRIM M, et al. Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites[J]. Mater Design, 2010, 31:2818-2833.
[11] OCANDO C, TERCJAK A, MONDRAGON I. Nanostructured systems based on SPS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites[J]. Comp Sci Tech, 2013, 70(7):1106-1112.
[12] MONJE I E, LOUIS E, MOLINA J M. Aluminum/diamond composites:a preparative metho-d to characterize reactivity and selectivity at the interface[J]. Script Mater, 2012, 68:562-567.
[13] ILO S, JUST C, BADISCH E, et al. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal matrix composites[J]. Mater Sci Eng:A, 2013, 530:6378-6385.
[14] 李苏,李俊寿,赵芳,等. TiB2材料的研究现状[J]. 材料导报,2013, 27(3):34-38. LI S, LI J T, ZHAO F, et al. Advance in research of TiB2 materials[J]. Materials Review, 2013, 27(3):34-38.
[15] SURESH S, SHENBAGA N, MOORTHI V. Aluminium-titanium diboride (Al-TiB2) metal matrix composites:challenges and opportunities[J]. Pro Eng, 2012, 38(1):89-97.
[16] NIRANJAN K, LAKSHMINARAYANAN P R. Dry sliding wear behavior of in situ Al-TiB2 composites[J]. Mater Design, 2013, 47(9):167-173.
[17] 钟群鹏.断口学[M].北京:高等教育出版社, 2006:144-147. ZHONG Q P. Fractography[M].Beijing:Higher Education Press, 2006:144-147.
[18] 崔忠圻,刘北兴. 金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社, 2007:159-160. CUI Z Q, LIU B X. Metallurgy and heat treatment theory[M]. Harbin:Harbin Institute of Technology Press, 2007:159-160.
[1] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[2] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[3] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[4] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[5] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[6] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[7] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[8] 史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46(9): 138-143.
[9] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[10] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[11] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[12] 樊振中, 万佟, 王端志, 王鲲鹏, 王胜强, 贺笃鹏. ZL114A合金冷态焊接微观组织与力学性能[J]. 材料工程, 2018, 46(6): 57-64.
[13] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[14] 黄高仁, 孙乙萌, 张利, 刘玉林. 微量Ce对亚快速凝固Al-Zn-Mg-Cu合金组织与性能的影响[J]. 材料工程, 2018, 46(3): 105-111.
[15] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn