Please wait a minute...
材料工程  2019, Vol. 47 Issue (2): 11-25    DOI: 10.11868/j.issn.1001-4381.2018.000450
  综述 本期目录 | 过刊浏览 | 高级检索 |
常增花1,2, 王建涛1,2, 李文进1,2, 武兆辉2, 卢世刚1,2
1. 北京有色金属研究总院, 北京 100088;
2. 国联汽车动力电池研究院有限责任公司, 北京 100088
Research progress on interface reaction of silicon-based anode for lithium-ion battery
CHANG Zeng-hua1,2, WANG Jian-tao1,2, LI Wen-jin1,2, WU Zhao-hui2, LU Shi-gang1,2
1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
全文: PDF(3319 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 硅作为一种极具潜力的锂离子电池负极材料,已引起研究者的广泛关注。然而硅材料储锂过程中伴随着巨大的体积变化,导致电极/电解液界面不稳定,是限制硅电极商业化的主要因素之一。深入了解硅负极的界面反应机理,有助于改善硅负极的界面性质,进而提高硅负极的电化学性能。本文综述了硅负极界面反应的演化机制,包括Li-Si合金化过程、硅表面氧化硅的反应和表面纯化膜的形成,并讨论了其对硅电化学性能的影响。
E-mail Alert
关键词 锂离子电池硅负极Li-Si合金化氧化硅钝化膜    
Abstract:As an attractive candidate for anode materials, silicon has attracted extensive attention. The instability of electrode/electrolyte interphase due to the inherent volume variation upon (de)lithiation is one of the major factors that limit the commercialization of Si materials. The in-depth understanding of the interface reaction of Si is helpful to modify the interface properties of Si, and further improve the electrochemical performance. This review summarizes the research on the interface reaction mechanism of Si during (de)lithiation process, including Li-Si alloying process, the reactions of primary oxide layer and the formation of passivation film on the Si surface. Moreover, the effect of the three processes on the Si electrochemical performance are also discussed.
Key wordslithium ion battery    silicon cathode    Li-Si alloying    SiOx    passive film
收稿日期: 2018-04-22      出版日期: 2019-02-21
中图分类号:  O613.7  
通讯作者: 卢世刚(1968-),男,教授,博士,主要从事锂离子电池相关研究,联系地址:北京市西城区新街口外大街2号北京有色金属研究总院(100088),     E-mail:
常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
CHANG Zeng-hua, WANG Jian-tao, LI Wen-jin, WU Zhao-hui, LU Shi-gang. Research progress on interface reaction of silicon-based anode for lithium-ion battery. Journal of Materials Engineering, 2019, 47(2): 11-25.
链接本文:      或
[1] WEN C J, HUGGINS R A. Chemical diffusion in intermediate phases in the lithium-silicon system[J]. Journal of Solid State Chemistry, 1981, 37(3):271-278.
[2] OBROVAC M N,CHRISTENSEN L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5):A93-A96.
[3] HATCHARD T D, DAHN J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of the Electrochemical Society, 2004, 151(6):A838-A842.
[4] OBROVAC M N, KRAUSE L J. Reversible cycling of crystalline silicon powder[J]. Journal of the Electrochemical Society, 2007, 154(2):A103-A108.
[5] DING N, XU J, YAO Y X, et al. Determination of the diffusion coefficient of lithium ions in nano-Si[J]. Solid State Ionics, 2009, 180(2/3):222-225.
[6] XIE J, IMANISHI N, ZHANG T, et al. Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering:a comparison of using liquid and polymer electrolytes[J]. Materials Chemistry and Physics, 2010, 120(2/3):421-425.
[7] PHILIPPE B, DEDRYVÈRE R, GORGOI M, et al. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries-a photoelectron spectroscopy study[J]. Chemistry of Materials, 2013, 25(3):394-404.
[8] PHARR M, ZHAO K, WANG X, et al. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-Ion batteries[J]. Nano Letters, 2012, 12(9):5039-5047.
[9] FU K, YILDIZ O, BHANUSHALI H, et al. Aligned carbon nanotube-silicon sheets:a novel nano-architecture for flexible lithium ion battery electrodes[J]. Advanced Materials, 2013, 25(36):5109-5114.
[10] FU K, LU Y, DIRICAN M, et al. Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries[J]. Nanoscale, 2014, 6(13):7489-7495.
[11] CAO C, STEINRVCK H G, SHYAM B, et al. In-situ study of silicon electrode lithiation with X-ray reflectivity[J]. Nano Letters, 2016, 16(12):7394-7401
[12] PHILIPPE B, DEDRYVERE R, ALLOUCHE J, et al. Nanosilicon electrodes for lithium-ion batteries:interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy[J]. Chemistry of Materials, 2012, 24(6):1107-1115.
[13] ZHANG W J. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(3):877-885.
[14] ANANI A, HUGGINS R A. Multinary alloy electrodes for solid state batteries I A phase diagram approach for the selection and storage properties determination of candidate electrode materials[J]. Journal of Power Sources, 1992, 38(3):351-362.
[15] AMEZAWA K, YAMAMOTO N, TOMⅡ Y, et al. Single-electrode Peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt[J]. Journal of the Electrochemical Society, 1998, 145(6):1986-1993.
[16] BOUKAMP B A,LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4):725-729.
[17] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429.
[18] OGATA K, SALAGER E, KERR C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature Communications, 2014, 5(5):3217-3228.
[19] PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8):3115-3141.
[20] SHIMIZU M, USUI H, SUZUMURA T, et al. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using raman microspectroscopy[J]. Journal of Physical Chemistry C, 2015, 119(6):2975-2982.
[21] LIMTHONGKUL P, JANG Y I, DUDNEY N J, et al. Electrochemically-driven solid-state amorphization in lithium-metal anodes[J]. Journal of Power Sources, 2003, 119/121(3):604-609.
[22] LI H, HUANG X J, CHEN L Q, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid State Letters, 1999, 2(11):547-549.
[23] LI J, DAHN J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Journal of the Electrochemical Society, 2007, 154(3):A156-A161.
[24] GAO H, XIAO L, PLUMEL I, et al. Parasitic reactions in nanosized silicon anodes for lithium-ion batteries[J]. Nano Letters, 2017, 17(3):1512-1519.
[25] GHASSEMI H, AU M, CHEN N, et al. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods[J]. ACS Nano, 2011, 5(10):7805-7811.
[26] LIU X H, ZHANG L Q, ZHONG L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258.
[27] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531.
[28] WELL M T, RYU I, LEE S W, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy[J]. Advanced Materials, 2012, 24(45):6034-6041.
[29] LIU X H, WANG J W, LIU Y, et al. In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons[J]. Carbon, 2012, 50(10):3836-3844.
[30] MISRA S, LIU N, NELSON J, et al. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes[J]. ACS Nano, 2012, 6(6):5465-5473.
[31] BARIS K, RANGEET B, MATHIEU M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26):9239-9249.
[32] HUGGINS R A. Materials science principles related to alloys of potential use in rechargeable lithium cells[J]. Journal of Power Sources, 1989, 26(1):109-120.
[33] LUO Z, FAN D, LIU X, et al. High performance silicon carbon composite anode materials for lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1):16-21.
[34] RADVANYI E, DE VITO E, PORCHER W, et al. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6):1120-1131.
[35] XUN S, SONG X, WANG L, et al. The effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes[J]. Journal of the Electrochemical Society, 2011, 158(12):A1260-A1266.
[36] MCDOWELL M T, LEE S W, RYU I, et al. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes[J]. Nano Letters, 2011, 11(9):4018-4025.
[37] GUO B, SHU J, WANG Z, et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2008, 10(12):1876-1878.
[38] KIM T, PARK S, OH S M. Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode[J]. Journal of the Electrochemical Society, 2007, 154(12):A1112-A1117.
[39] GRAETZ J, AHN C C, YAZAMI R, et al. Highly reversible lithium storage in nanostructured silicon[J]. Electrochemical and Solid State Letters, 2003, 6(9):A194-A197.
[40] SAINT J, MORCRETTE M, LARCHER D, et al. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites[J]. Advanced Functional Materials, 2007, 17(11):1765-1774.
[41] LEE Y M, LEE J Y, SHIM H T, et al. SEI layer formation on amorphous si thin electrode during precycling[J]. Journal of the Electrochemical Society, 2007, 154(6):A515-A519.
[42] SUN Q, ZHANG B, FU Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries[J]. Applied Surface Science, 2008, 254(13):3774-3779.
[43] SCHRODER K W, DYLLA A G, HARRIS S J, et al. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(23):21510-21524.
[44] MITRA A, RIMSTIDT J D. Solubility and dissolution rate of silica in acid fluoride solutions[J]. Geochimica et Cosmochimica Acta, 2009, 73(23):7045-7059.
[45] HUBAUD A A, YANG Z Z, SCHROEDER D J, et al. Interfacial study of the role of SiO2 on Si anodes using electrochemical quartz crystal microbalance[J]. Journal of Power Sources, 2015, 282:639-644.
[46] DIRICAN M, LU Y, FU K, et al. SiO2-confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries[J]. RSC Advances, 2015, 5(44):34744-34751.
[47] CHAN C K, RUFFO R, HONG S S, et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes[J]. Journal of Power Sources, 2009, 189(2):1132-1140.
[48] XUN S, SONG X, GRASS M E, et al. Improved initial performance of Si nanoparticles by surface oxide reduction for lithium-ion battery application[J]. Electrochemical and Solid State Letters, 2011, 14(5):A61-A63.
[49] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5):309-314.
[50] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603.
[51] YEN Y C, CHAO S C, WU H C, et al. Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells[J]. Journal of the Electrochemical Society, 2009, 156(2):A95-A102.
[52] RADVANYI E, PORCHER W, DE VITO E, et al. Failure mechanisms of nano-silicon anodes upon cycling:an electrode porosity evolution model[J]. Physical Chemistry Chemical Physics, 2014, 16(32):17142-17153.
[53] MICHAN A L, DIVITINI G, PELL A J, et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes[J]. Journal of the American Chemical Society, 2016, 138(25):7918-7931.
[54] HOROWITZ Y, STEINRUVCK H G, HAN H L, et al. Fluoroethylene carbonate induces ordered electrolyte interface on silicon and sapphire surfaces as revealed by sum frequency generation vibrational spectroscopy and X-ray reflectivity[J]. Nano Letters, 2018, 18(3):2105-2111.
[55] HOROWITZ Y, HAN H L, SOTO F A, et al. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes:electrolyte interface structure probed by sum frequency vibrational spectroscopy and ab initio molecular dynamics[J]. Nano Letters, 2017,DOI:10.1021/acs.nanolett.7b04688.
[56] VEITH G M, DOUCET M, SACCI R L, et al. Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive[J]. Scientific Reports, 2017, 7(1):6326.
[57] SCHIELE A, BREITUNG B, HATSUKADE T, et al. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Letters, 2017, 2(10):2228-2233.
[58] HEIST A, PIPER D M, EVANS T, et al. Self-contained fragmentation and interfacial stability in crude micron-silicon anodes[J]. Journal of the Electrochemical Society, 2018, 165(2):A244-A250.
[59] KIL E H, CHOI K H, HA H J, et al. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries[J]. Advanced Materials, 2013, 25(10):1395-1400.
[60] CHANG Z H, WANG J T, WU Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. Chem Sus Chem, 2018, 11:1-11.
[61] MCDOWELL M T, RYU I, LEE S W, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy[J]. Advanced Materials, 2012, 24(45):6034-6041.
[62] HVGER E, STAHN J,SCHMIDT H. Neutron reflectometry to measure in situ Li permeation through ultrathin silicon layers and interfaces[J]. Journal of the Electrochemical Society, 2015, 162(13):A7104-A7109.
[63] JERLIU B, HVGER E, HORISBERGER M, et al. Irreversible lithium storage during lithiation of amorphous silicon thinfilm electrodes studied by in-situ neutron reflectometry[J]. Journal of Power Sources, 2017, 359:415-421.
[64] TOKRANOV A, SHELDON B W, LI C, et al. In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6672.
[65] YOON I, ABRAHAM D P, LUCHT B L, et al. In situ measurement of solid electrolyte interphase evolution on silicon anodes using atomic force microscopy[J]. Advanced Energy Materials, 2016, 6(12):1600099.
[66] HUANG S, CHEONG L Z, WANG S, et al. In situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy[J]. Applied Surface Science, 2018, 452:67-74.
[67] YOHANNES Y B, WU N L,LIN S D. In situ analysis of solid electrolyte interface over Si based anodes using diffuse reflectance infrared fourier transform spectroscopy[J]. ECS Transactions, 2017, 77(1):71-76.
[1] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[2] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[3] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[4] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[5] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[6] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[7] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[8] 黄连根, 郑玉婴. 树枝状介孔二氧化硅的制备及其负载纳米银的抗菌性[J]. 材料工程, 2018, 46(10): 135-141.
[9] 刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
[10] 袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
[11] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
[12] 马昊, 刘磊, 苏杰, 路雪森. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45(6): 138-146.
[13] 张红涛, 尚华, 顾波, 张恒源. 沸石基锂离子电池隔膜的制备及性能[J]. 材料工程, 2017, 45(12): 83-87.
[14] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
[15] 王国材, 肖小波, 陈艳萍, 王晨. Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究[J]. 材料工程, 2016, 44(5): 72-78.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持