
聚醚醚酮与髌骨软骨间的生物摩擦学特性
Biological tribological properties between polyetheretherketone and patella cartilage
以聚醚醚酮(polyetheretherketone,PEEK)与天然软骨为研究对象,医用CoCrMo和天然软骨作为PEEK的对比材料,开展往复滑动摩擦磨损实验,研究法向载荷、滑移速率、摩擦配副对其摩擦磨损行为的影响。结果表明:在小牛血清润滑的条件下,天然股骨软骨/髌骨软骨的摩擦因数最小,PEEK/髌骨软骨摩擦因数明显低于CoCrMo/髌骨软骨,PEEK/髌骨软骨配副的软骨表面磨损轻微,CoCrMo/髌骨软骨配副的软骨表面损伤严重;PEEK/髌骨软骨配副间的摩擦因数随法向载荷的增大而减小,在低载荷条件下(10~20N)表现明显,且法向载荷越大,PEEK表面磨痕越深,摩擦副磨损越严重;PEEK/髌骨软骨配副间的摩擦因数随滑移速率的增大而增大,在高滑移动速率条件下(10~20mm/s)明显,且滑移速率越大,PEEK表面磨痕越深,摩擦副磨损越严重;相对于滑移速率,载荷对摩擦因数的影响更大。
Reciprocating sliding friction and wear tests were carried out on polyetheretherketone (PEEK) and natural patella cartilage using the pin-on-disk configuration at different normal loads, slipping velocity and friction pairs under 25% fetal bovine serum, where natural femoral cartilage and CoCrMo were used for comparison to PEEK. The influence of normal load, slipping velocity and friction pair on the friction and wear behavior was studied. The results show that under 25% fetal bovine serum conditions, the friction coefficient of femoral cartilage/patella cartilage is the smallest among that of PEEK/patella cartilage and CoCrMo/patella cartilage, the coefficient of friction of PEEK/patella is obviously lower than that of CoCrMo/patella and the wear surface of CoCrMo/patella is more seriously damaged than that of PEEK/patella. The friction coefficient of PEEK/patella decreases with the increase of normal load especially under the low loads (10-20N) and increases with the increase of slipping velocity especially under the high slipping velocity conditions (10-20mm/s). The wear surface damage increases with the increase of normal load and slipping velocity. The normal load is more effective than slipping velocity.
聚醚醚酮 / 髌骨软骨 / 生物摩擦学 / 磨损机理 {{custom_keyword}} /
polyetheretherketone / patella cartilage / biological tribology / abrasion mechanism {{custom_keyword}} /
表 1 选用材料的力学性能Table 1 Mechanical properties of materials |
Material | Tensile strength/MPa | Density (kg·m-3) | Elastic modulus/GPa | Poisson ratio | Vickers hardness (HV) |
PEEK | 97 | 1300 | 3.6 | 0.35 | 30-40 |
CoCrMo | 970 | 8500 | 200 | 0.3 | 321 |
图 3 不同配副表面宏观形貌(a)PEEK盘;(b)CoCrMo盘;(c)cartilage盘 Fig.3 Macroscopic morphologies of the sample surface under different pairs (a)PEEK disc; (b)CoCrMo disc; (c)cartilage disc |
图 4 不同配副表面SEM形貌(a)PEEK盘; (b)CoCrMo盘; (c)软骨盘; (d)髌骨销(PEEK); (e)髌骨销(CoCrMo); (f)髌骨销(软骨) Fig.4 SEM morphologies of the sample surface under different pairs (a)PEEK disc; (b)CoCrMo disc; (c)cartilage disc; (d)patella cartilage pin(PEEK); (e)patella cartilage pin(CoCrMo); (f)patella cartilage pin(cartilage) |
图 8 不同载荷下PEEK表面形貌(a)10N;(b)20N;(c)30N;(d)40N;(e)50N Fig.8 Morphologies of the PEEK surface under different axial load (a)10N;(b)20N;(c)30N;(d)40N;(e)50N |
图 9 不同载荷下PEEK表面磨痕轮廓(a)10N;(b)20N;(c)30N;(d)40N;(e)50N Fig.9 Trace profiles of the PEEK surface under different axial load (a)10N;(b)20N;(c)30N;(d)40N;(e)50N |
图 12 摩擦因数随速率的变化曲线(a)摩擦因数时变曲线; (b)稳定阶段的摩擦因数 Fig.12 Change curves of friction coefficient under different velocities (a)time-dependent curve of the friction coefficient; (b)friction coefficient at steady stage |
图 13 不同速率下PEEK表面形貌(a)2mm/s; (b)5mm/s; (c)10mm/s; (d)15mm/s; (e)20mm/s Fig.13 Morphologies of the worn PEEK surface under different velocities (a)2mm/s; (b)5mm/s; (c)10mm/s; (d)15mm/s; (e)20mm/s |
图 14 不同速率下PEEK表面磨痕轮廓(a)2mm/s; (b)5mm/s; (c)10mm/s; (d)15mm/s; (e)20mm/s Fig.14 Trace profiles of the worn PEEK surface under different velocities (a)2mm/s; (b)5mm/s; (c)10mm/s; (d)15mm/s; (e)20mm/s |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
覃小东, 李朝健, 符俏. 人工膝关节常用假体材料及其生物相容性[J]. 中国组织工程研究, 2012, 16 (12): 2257- 2260.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
程芳伟, 姜其斌, 张志军. 聚醚醚酮耐磨改性研究进展[J]. 工程塑料应用, 2014, 42 (1): 126- 129.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
宗倩颖, 叶霖, 张爱英, 等. 聚醚醚酮及其复合材料在生物医用领域的应用[J]. 合成树脂及塑料, 2016, 33 (3): 93- 96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
韩成龙, 刘杨, 姜超, 等. 锚定聚醚醚酮融合器结合纳米人工骨治疗脊髓型颈椎病[J]. 中国组织工程研究, 2010, 14 (35): 6643- 6646.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
李锋, 张克, 刘岩, 等. 保留髌骨膝关节置换的症状及影像学评价[J]. 中国组织工程研究, 2011, 15 (26): 4773- 4776.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
葛世荣, 王成焘. 人体生物摩擦学的研究现状与展望[J]. 摩擦学学报, 2005, 25 (2): 186- 191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |