Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (4): 1-14    DOI: 10.11868/j.issn.1001-4381.2018.001176
  综述 本期目录 | 过刊浏览 | 高级检索 |
质子交换膜燃料电池膜电极的结构优化
王倩倩1, 郑俊生1,*(), 裴冯来2, 戴宁宁1, 郑剑平1,3
1 同济大学 汽车学院 新能源汽车工程中心, 上海 201804
2 上海机车检测认证技术研究中心有限公司, 上海 201805
3 佛罗里达州立大学 电气与计算机工程系, 美国 佛罗里达 32304
Structural optimization of PEMFC membrane electrode assembly
Qian-qian WANG1, Jun-sheng ZHENG1,*(), Feng-lai PEI2, Ning-ning DAI1, Jim P ZHENG1,3
1 Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, Shanghai 201804, China
2 Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China
3 Department of Electrical and Computer Engineering, Florida State University, Florida 32304, USA
全文: PDF(17991 KB)   HTML ( 27 )  
输出: BibTeX | EndNote (RIS)      
摘要 

膜电极(membrane electrode assembly,MEA)是质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的核心部件,为PEMFC提供了多相物质传递的微通道和电化学反应场所。为了实现燃料电池商业化目标,需要制备高功率密度、低Pt载量、耐久性好的MEA。在MEA中除了催化剂以外,各功能层结构、层与层之间的界面都对MEA的性能具有重要影响。传统方法(CCS法和CCM法)制备的MEA在结构上有很多缺陷,明显制约了Pt的利用率和系统传质能力。通过优化各功能层结构消除缺陷,将有利于进一步提升PEMFC综合性能。本文从传统MEA结构存在的问题出发,梳理了近年来关于催化层、质子交换膜和气体扩散层结构优化方面的文献,归纳总结了各先进结构的制备方法、构效关系以及优缺点,对未来高性能、低成本和长寿命的MEA的开发具有指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王倩倩
郑俊生
裴冯来
戴宁宁
郑剑平
关键词 质子交换膜燃料电池膜电极制备结构优化膜电极性能    
Abstract

Membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cell (PEMFC), which provides the microchannels for the transfer of multiphase substances and electrochemical reaction sites. To achieve the commercialization of PEMFC, fabricating MEA with high power density, low Pt loading and good durability is needed. Inside MEA, the structures of function layers and the interfaces between layer to layer all have great impact on the performance of MEA outside of the catalyst. The MEA prepared by traditional methods (CCS method and CCM method) has many structural defects, which greatly reduces the utilization rate of Pt and the mass transfer ability. By optimizing the structure of each functional layer to eliminate defects, it will be beneficial to further improve the comprehensive performance of PEMFC. Based on the problems existing in the traditional MEA structure, literatures in recent years on the improvement of the structure of CL, PEM and GDL were combed, and the preparation methods, structure-activity relations, and advantages/disadvantages of each advanced structure were summarized. This paper will provide a guidance for the development of MEA with high performance, low cost and long service life in the future.

Key wordsproton exchange membrane fuel cell    MEA fabrication    structure optimization    MEA prop-erty
收稿日期: 2018-10-08      出版日期: 2019-04-19
中图分类号:  O646.54  
基金资助:中国石油科技创新基金项目(2016D-5007-0501);上海市科学技术委员会科研计划项目(16DZ2290300);上海市科学技术委员会科研计划项目(17DZ1200403)
通讯作者: 郑俊生     E-mail: jszheng@tongji.edu.cn
作者简介: 郑俊生(1979-), 男, 副研究员, 博士, 研究方向为车用新能源, 联系地址:上海市嘉定区曹安公路4800号同济大学(201804), E-mail:jszheng@tongji.edu.cn
引用本文:   
王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
Qian-qian WANG, Jun-sheng ZHENG, Feng-lai PEI, Ning-ning DAI, Jim P ZHENG. Structural optimization of PEMFC membrane electrode assembly. Journal of Materials Engineering, 2019, 47(4): 1-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001176      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/1
Fig.1  PEMFC工作原理示意图[6]
Fig.2  传统MEA制备流程示意图
(a)CCS法;(b)CCM法
Fig.3  转印法制备MEA流程示意图
Fig.4  电沉积法制备MEA示意图
Fig.5  超声喷涂法制备MEA示意图[26]
Fig.6  阴极双层CL设计方案[31]
(a)PEM侧Pt负载量高于GDL侧;(b)PEM侧Pt负载量低于GDL侧
Fig.7  真空抽滤制备双层梯度分布Buckypaper催化层[34]
Fig.8  MCTS上合金催化剂薄膜包覆的定向晶须SEM图[36]
Characteristic Units DOE 2020 targets 3M 2015 status
QT kW/℃ 1.45 1.45
Cost $/kW 7 8.62N
Durability with cycling h 5000 656-1864
Performance@0.8V mA/cm2 300 310
Performance@rated power mW/cm2 1000 861
Platinum group metal total content (both electrodes) g/kW (rated) 0.125 0.147
Platinum group metal (PGM) total loading mgPt/cm2(electrode area) 0.125 0.131
Table 1  NSTF电极性能与DOE技术指标对比[4, 37]
Fig.9  反蛋白结构MEA电池极化曲线[41](催化剂负载量为0.20mg/cm2,内嵌图为传统电极与新电极的功率密度差)
Fig.10  NfnPPy构造方案[43]  (a)电化学聚合;(b)Pt负载;(c)制备MEA
Fig.11  电极印刷图案,单个图案尺寸1mm×1mm[45]
Fig.12  根据流道分布使用喷墨印刷法制备的弯曲PCL结构[46]
Fig.13  模板法制备通道结构PCL的示意图[47]
Fig.14  PEM表面刻印菱形图案构造及通过喷射Pt/C催化剂制备MEA方案说明[50]
Fig.15  单面多孔膜SEM图[52]
Fig.16  GDBL原始结构与改良后结构示意图[59]
(a)GDL-A;(b)GDL-A′B;(c)GDL-A′C
1 衣宝廉. 燃料电池和燃料电池车发展历程及技术现状[M]. 北京: 科学出版社, 2018.
1 YI B L . Development history and technology status of fuel cells and fuel cell vehicles[M]. Beijing: Science Press, 2018.
2 BRITTO P J , SANTHANAM K S , RUBIOA , et al. Improved charge transfer at carbon nanotube electrodes[J]. Advanced Materials, 1999, 11 (2): 154- 157.
doi: 10.1002/(ISSN)1521-4095
3 HWANG S J , KIM S K , LEE J G , et al. Role of electronic perturbation in stability and activity of Pt-based alloy nanocataly-sts for oxygen reduction[J]. Journal of the American Chemical Society, 2012, 134 (48): 19508- 19511.
doi: 10.1021/ja307951y
4 NONE.Fuel cell technical team roadmap[R/OL].United States: [s.n.], 2013[2018-11-01].Web.doi: 10.2172/1220127.
5 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27 (2/3): 310- 320.
5 WANG C , WANG S B , ZHANG J B , et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27 (2/3): 310- 320.
6 黄豪.质子交换膜燃料电池膜电极耐久性研究[D].上海: 华东理工大学, 2018.
6 HUANG H.Durability study of membrane electrode accembly for proton exchange membrane fuel cell[D].Shanghai: East China University of Science and Technology, 2018.
7 汪圣龙, 唐浩林, 潘牧, 等. 膜电极结构对质子交换膜燃料电池性能的影响[J]. 材料导报, 2003, 17 (10): 37- 40.
doi: 10.3321/j.issn:1005-023X.2003.10.011
7 WANG S L , TANG H L , PAN M , et al. Progress in MEA structure and its influences on PEM fuel cell[J]. Materials Review, 2003, 17 (10): 37- 40.
doi: 10.3321/j.issn:1005-023X.2003.10.011
8 JEONG G , KIM M J , HAN J , et al. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2016, 323, 142- 146.
doi: 10.1016/j.jpowsour.2016.05.042
9 ZHANG C K , YU H M , LI Y K , et al. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells[J]. Chem Sus Chem, 2013, 6 (4): 659- 666.
doi: 10.1002/cssc.201200828
10 WILSON M S , GOTTESFELD S . Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 1992, 22 (1): 1- 7.
11 CHO D H , LEE S Y , DONG W S , et al. Swelling agent adopted decal transfer method for membrane electrode assembly fabrication[J]. Journal of Power Sources, 2014, 258 (14): 272- 280.
12 PARK H S , CHO Y H , CHO Y H , et al. Modified decal method and its related study of microporous layer in PEM fuel cells[J]. Journal of the Electrochemical Society, 2008, 155 (5): B455- B460.
doi: 10.1149/1.2844420
13 SHAHGALDI S , ALAEFOUR I , UNSWORTH G , et al. Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42 (16): 11813- 11822.
doi: 10.1016/j.ijhydene.2017.02.127
14 KRISHNAN N N , PRABHURAM J , HONG Y T , et al. Fabrication of MEA with hydrocarbon based membranes using low temperature decal method for DMFC[J]. International Journal of Hydrogen Energy, 2010, 35 (11): 5647- 5655.
doi: 10.1016/j.ijhydene.2010.03.023
15 HONG J C , JANG H , LIM S , et al. Development of a novel decal transfer process for fabrication of high-performance and reliable membrane electrode assemblies for PEMFCs[J]. International Journal of Hydrogen Energy, 2011, 36 (19): 12465- 12473.
doi: 10.1016/j.ijhydene.2011.06.113
16 TAYLOR E J . Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 1992, 139 (5): L45- L46.
doi: 10.1149/1.2069439
17 LAPP A S , DUAN Z , MARCELLA N , et al. Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method[J]. Journal of the American Chemical Society, 2018, 140, 6249- 6259.
doi: 10.1021/jacs.7b12306
18 QU N S , ZHU D , CHAN K C , et al. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density[J]. Surface & Coatings Technology, 2003, 168 (2): 123- 128.
19 ANTOINE O , DURAND R . In situ electrochemical deposition of Pt nanoparticles on carbon and inside nafion[J]. Creative Education, 2001, 5 (45): 13825- 13832.
20 KIM H , POPOV B N . Development of novel method for preparation of PEMFC electrodes[J]. Electrochemical and Solid-State Letters, 2004, 7 (4): A71- A74.
doi: 10.1149/1.1648611
21 ADILBISH G , YU Y T . Effect of the Nafion content in the MPL on the catalytic activity of the Pt/C-Nafion electrode prepared by pulsed electrophoresis deposition[J]. International Journal of Hydrogen Energy, 2017, 42 (2): 1181- 1188.
doi: 10.1016/j.ijhydene.2016.09.143
22 ADILBISH G , LEE J W , JANG Y S , et al. Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC[J]. International Journal of Hydrogen Energy, 2014, 39 (7): 3381- 3386.
doi: 10.1016/j.ijhydene.2013.11.044
23 EGETENMEYER A , RADEV I , DURNEATA D , et al. Pulse electrodeposited cathode catalyst layers for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42 (19): 13649- 13660.
doi: 10.1016/j.ijhydene.2017.01.212
24 MILLINGTON B , WHIPPLE V , POLLET B G . A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique[J]. Journal of Power Sources, 2011, 196 (20): 8500- 8508.
doi: 10.1016/j.jpowsour.2011.06.024
25 SU H , JAO T C , BARRON O , et al. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J]. Journal of Power Sources, 2014, 267 (3): 155- 159.
26 SASSIN M B , GARSANY Y , GOULD B D , et al. Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells[J]. Analytical Chemistry, 2016, 89 (1): 511- 518.
27 WANG Q , EIKERLING M , SONG D , et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2005, 151 (7): A1171- A1179.
28 XIE Z , NAVESSIN T , SHI K , et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells:Ⅱ.experimental study of the effect of nafion distribution batteries, fuel cells, and energy conversion[J]. Journal of the Electrochemical Society, 2005, 152 (6): A1171- A1179.
doi: 10.1149/1.1904990
29 WANG Q , EIKERLING M , SONG D , et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2005, 151 (7): A1171- A1179.
30 TAYLOR A D , KIM E Y , HUMES V P , et al. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells[J]. Journal of Power Sources, 2007, 171 (1): 101- 106.
doi: 10.1016/j.jpowsour.2007.01.024
31 MATSUDA H , FUSHINOBU K , OHMA A , et al. Structural effect of cathode catalyst layer on the performance of PEFC[J]. Journal of Thermal Science & Technology, 2011, 6 (6): 154- 163.
32 SU H N , LIAO S J , WU Y N . Significant improvement in cathode performance for proton exchange membrane fuel cell by a novel double catalyst layer design[J]. Journal of Power Sources, 2010, 195 (11): 3477- 3480.
doi: 10.1016/j.jpowsour.2009.12.064
33 YE L , GAO Y , ZHU S , et al. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. International Journal of Hydrogen Energy, 2017, 42 (10): 7241- 7245.
doi: 10.1016/j.ijhydene.2016.11.002
34 ZHU S , ZHENG J , HUANG J , et al. Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 393, 19- 31.
doi: 10.1016/j.jpowsour.2018.04.100
35 MIDDELMAN E . Improved PEM fuel cell electrodes by controlled self-assembly[J]. Fuel Cells Bulletin, 2002, 2002 (11): 9- 12.
doi: 10.1016/S1464-2859(02)11028-5
36 DEBE M K . Nanostructured thin film electrocatalysts for PEM fuel cells-a tutorial on the fundamental characteristics and practical properties of NSTF catalysts[J]. Ecs Transactions, 2012, 45 (2): 47- 68.
37 3M Company.Final report-high performance, durable, low cost membrane electrode assemblies for transportation applications[EB/OL] [2018-11-01].https://www.osti.gov/servlets/purl/1360747.
38 CULLEN D A , LOPEZHARO M , BAYLEGUILLEMAUD P , et al. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11660- 11667.
doi: 10.1039/C5TA01854D
39 LV H , WANG J , YAN Z , et al. Carbon-supported Pt-Co nanowires as a novel cathode catalyst for proton exchange membrane fuel cells[J]. Fuel Cells, 2017, 17 (5): 635- 642.
doi: 10.1002/fuce.201700136
40 GALBIATI S , MORIN A , PAUC N . Nanotubes array electrodes by Pt evaporation:half-cell characterization and PEM fuel cell demonstration[J]. Applied Catalysis B Environmental, 2015, 165 (2): 149- 157.
41 KIM O H , CHO Y H , KANG S H , et al. Ordered microporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure[J]. Nature Communications, 2013, 4, 2473.
doi: 10.1038/ncomms3473
42 MURATA S , IMANISHI M , HASEGAWA S , et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 253 (5): 104- 113.
43 XIA Z , WANG S , JIANG L , et al. Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix[J]. Scientific Reports, 2015, 5 (5): 16100.
44 TOWNE S , VISWANATHAN V , HOLBERY J , et al. Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology[J]. Journal of Power Sources, 2007, 171 (2): 575- 584.
doi: 10.1016/j.jpowsour.2007.07.017
45 SILBERNER J . Performance characteristics of PEFCs with patterned electrodes prepared by piezo-electric printing[J]. Ecs Transactions, 2013, 50 (2): 423- 427.
46 SHUKLA S , DOMICAN K , KARAN K , et al. Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing[J]. Electrochemical Acta, 2015, 156, 289- 300.
doi: 10.1016/j.electacta.2015.01.028
47 LEE D H , JO W , YUK S , et al. In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells[J]. Acs Applied Materials & Interfaces, 2018, 10 (5): 4682- 4688.
48 KOH J K , JEON Y , YONG I C , et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2 (23): 8652- 8659.
doi: 10.1039/C4TA00674G
49 JANG S , KIM M , YUN S K , et al. Facile multiscale patterning by creep-assisted sequential imprinting and fuel cell application[J]. ACS Appl Mater Interfaces, 2016, 8 (18): 11459- 11465.
doi: 10.1021/acsami.6b01555
50 SANG M K , YUN S K , AHN C , et al. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2016, 317, 19- 24.
doi: 10.1016/j.jpowsour.2016.03.083
51 CHOI W C , JU D K , WOO S I . Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell[J]. Journal of Power Sources, 2001, 96 (2): 411- 414.
doi: 10.1016/S0378-7753(00)00602-9
52 DANG Q K , HENKENSMEIER D , KRISHNAN N N , et al. Nafion membranes with a porous surface[J]. Journal of Membrane Science, 2014, 460, 199- 205.
doi: 10.1016/j.memsci.2014.03.003
53 JOSEPH D , BUSSELMANN J , HARMS C , et al. Porous Nafion membranes[J]. Journal of Membrane Science, 2016, 520, 723- 730.
doi: 10.1016/j.memsci.2016.08.025
54 BREITWIESER M , MORONI R , SCHOCK J , et al. Water management in novel direct membrane deposition fuel cells under low humidification[J]. International Journal of Hydrogen Energy, 2016, 41 (26): 11412- 11417.
doi: 10.1016/j.ijhydene.2016.05.018
55 VIERRATH S , BREITWIESER M , KLINGELE M , et al. The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J]. Journal of Power Sources, 2016, 326, 170- 175.
doi: 10.1016/j.jpowsour.2016.06.132
56 BAYER T , PHAM H C , SASAKI K , et al. Spray deposition of Nafion membranes:electrode-supported fuel cells[J]. Journal of Power Sources, 2016, 327, 319- 326.
doi: 10.1016/j.jpowsour.2016.07.059
57 HUANG Y X , CHENG C H , WANG X D , et al. Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells[J]. Energy, 2010, 35 (12): 4786- 4794.
doi: 10.1016/j.energy.2010.09.011
58 VIJAY R , SESHADRI S K , HARIDOSS P . Gas diffusion layer with PTFE gradients for effective water management in PEM fuel cells[J]. Transactions of the Indian Institute of Metals, 2011, 64 (1/2): 175- 179.
59 KONG I M , CHOI J W , KIM S I , et al. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer[J]. Applied Energy, 2015, 145, 345- 353.
doi: 10.1016/j.apenergy.2015.02.027
[1] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[2] 方滔, 陈力, 廉博博, 胡健, 李海龙. 炭化过程施压对气体扩散层用碳纸结构与性能的影响[J]. 材料工程, 2021, 49(5): 98-105.
[3] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[4] 陈一哲, 赵越, 王辉. 汽车领域纤维复合材料构件轻量化设计与工艺研究进展[J]. 材料工程, 2020, 48(12): 36-43.
[5] 卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
[6] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[7] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn