Orientation dependence of strain stored energy and its effect on recrystallization texture in non-oriented silicon steel
Shuang-jie CHU1,*(), Kan-yi SHEN1, Yu-hui SHA2,*(), Xi CHEN2
1 Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China 2 Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China
The crystal plasticity finite element simulation and experiment were used to study the orientation flow and strain stored energy accumulation of different initial texture components during cold rolling in non-oriented silicon steel. The results show that strong α and γ as well as weak λ deformation textures are formed after cold rolling. The recrystallization texture consists of γ, α, η and λ components, whose orientation densities are dependent on cold rolling reduction. With the increase of cold rolling reduction, λ recrystallization texture increases gradually, η recrystallization texture increases first and then decreases, γ recrystallization texture decreases first and then increases, while α recrystallization texture is weakened slightly. The strain stored energy during cold rolling has a significant dependence on initial grain orientation that the initial γ orientation has a similar or evidently higher strain stored energy accumulation rate below or above 50% reduction compared with initial α orientation, while λ keeps the lowest strain stored energy accumulation rate during cold rolling. Particularly, the different initial orientations rotating to an identical deformed orientation may cause an obvious difference in strain stored energy accumulation rate. The development of recrystallization texture in non-oriented silicon steel is determined by orientation flow and strain stored energy accumulation in various texture components during cold rolling.
储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
Shuang-jie CHU, Kan-yi SHEN, Yu-hui SHA, Xi CHEN. Orientation dependence of strain stored energy and its effect on recrystallization texture in non-oriented silicon steel. Journal of Materials Engineering, 2019, 47(8): 147-153.
PEI W , SHA Y H , ZHAO R Q , et al. Recrystallization texture development in asymmetrically rolled non-oriented silicon steel[J]. Journal of Northeastern University (Natural Science), 2012, 33 (9): 1261- 1265.
4
PARK J T , SZPUNAR J A . Evolution of recrystallization texture in nonoriented electrical steels[J]. Acta Materialia, 2003, 51 (11): 3037- 3051.
doi: 10.1016/S1359-6454(03)00115-0
5
ABE M , KOKABU Y , HAYASHI Y , et al. Effect of grain boun-daries on the cold rolling and annealing textures of pure iron[J]. Transactions of the Japan Institute of Metals, 1982, 23 (11): 718- 725.
doi: 10.2320/matertrans1960.23.718
6
SHA Y H , SUN C , ZHANG F , et al. Strong cube recrystallization texture in silicon steel by twin-roll casting process[J]. Acta Materialia, 2014, 76, 106- 117.
doi: 10.1016/j.actamat.2014.05.020
7
QUADIR M Z , DUGGAN B J . Deformation banding and recryst-allization of α fiber components in heavily rolled IF steel[J]. Acta Materialia, 2004, 52 (13): 4011- 4021.
doi: 10.1016/j.actamat.2004.05.017
8
STOJAKOVIC D , DOHERTY R D , KALIDINDI S R , et al. Ther-momechanical processing for recovery of desired 〈001〉 fiber texture in electric motor steels[J]. Metallurgical and Materials Transactions A, 2008, 39 (7): 1738- 1746.
doi: 10.1007/s11661-008-9525-2
9
HUTCHINSON W B . Development and control of annealing text-ures in low-carbon steels[J]. Metallurgical Reviews, 1984, 29 (1): 25- 42.
10
CHENG J , SHEN J , MISHRA R K , et al. Discrete twin evolution in Mg alloys using a novel crystal plasticity finite element model[J]. Acta Materialia, 2018, 149, 142- 153.
doi: 10.1016/j.actamat.2018.02.032
ZHAO W J , ZHANG L , LI X B , et al. CPFEM simulations on grain rotation of γ-TiAl single crystal during plastic deformation[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (3): 465- 473.
12
HAMA T , KOBUKI A , TAKUDA H . Crystal-plasticity finite-element analysis of anisotropic deformation behavior in a comm-ercially pure titanium grade 1 sheet[J]. International Journal of Plasticity, 2017, 91, 77- 108.
doi: 10.1016/j.ijplas.2016.12.005
13
WEI X , HOJDA S , DIERDORF J , et al. Model for texture evol-ution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel[C]//20th International ESAFORM Conference on Material Forming[J]. Dublin, Ireland:American Institute of Physics, 2017, 170005.
SHEN X M , GUAN X J , ZHANG J X , et al. Coupling of FEM with Monte Carlo for simulating recrystallization in cold rolling pure aluminum sheet[J]. The Chinese Journal of Nonferrous Metals, 2007, 17 (1): 124- 130.
doi: 10.3321/j.issn:1004-0609.2007.01.019
15
HUANG Y.A user-material subroutine incorporating single cry-stal plasticity in the ABAQUS finite element program[D].Cambridge, US: Harvard University, 1991.
16
HUTCHINSON J W . Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society A, 1976, 348 (1652): 101- 127.
doi: 10.1098/rspa.1976.0027
17
KLUSEMANN B , SVENDSEN B , VEHOFF H . Investigation of the deformation behavior of Fe-3%Si sheet metal with large grains via crystal plasticity and finite-element modeling[J]. Computational Materials Science, 2012, 52 (1): 25- 32.
18
MOHAMED G , BACROIX B . Role of stored energy in static rec-rystallization of cold rolled copper single and multicrystals[J]. Acta Materialia, 2000, 48 (13): 3295- 3302.
doi: 10.1016/S1359-6454(00)00155-5
19
HULL D . Orientation and temperature dependence of plastic def-ormation processes in 3.25% silicon iron[J]. Proceedings of the Royal Society A, 1963, 274 (1356): 5- 20.
doi: 10.1098/rspa.1963.0111
20
INAGAKI H . Fundamental aspect of texture formation in low carbon steel[J]. ISIJ International, 1994, 34 (4): 313- 321.
doi: 10.2355/isijinternational.34.313
21
何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 83- 85.
21
HE Z Z , ZHAO Y , LUO H W . Electrical steels[M]. Beijing: Metallurgical Industry Press, 2012: 83- 85.
22
USHIODA K , NAKANISHI S , MORIKAWA T , et al. Evolution of heterogeneous deformation structure and recrystallization texture of steel[J]. Materials Science Forum, 2013, 753, 58- 65.
doi: 10.4028/www.scientific.net/MSF.753.58
23
DENIS N M , ROBERT B M , BELADI H . The influence of solute carbon in cold-rolled steels on shear band formation and recrystallization texture[J]. ISIJ International, 2004, 44 (6): 1072- 1078.
doi: 10.2355/isijinternational.44.1072