Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 93-100    DOI: 10.11868/j.issn.1001-4381.2018.000533
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
P123对多孔TiN粉体孔结构及电化学性能的影响
呼世磊1,2, 刘盼1,2, 崔燚1,2, 倪洁3, 吕东风1,2, 魏恒勇1,2, 卜景龙1,2
1. 华北理工大学 材料科学与工程学院, 河北 唐山 063009;
2. 河北省无机非金属材料重点实验室, 河北 唐山 063009;
3. 同济大学 汽车学院, 上海 200092
Effect of P123 on pore structure and electrochemical performance of porous TiN powders
HU Shi-lei1,2, LIU Pan1,2, CUI Yi1,2, NI Jie3, LYU Dong-feng1,2, WEI Heng-yong1,2, BU Jing-long1,2
1. College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China;
2. Hebei Provincial Key Laboratory of Inorganic Non-metallic Materials, Tangshan 063009, Hebei, China;
3. College of Automotive Studies, Tongji University, Shanghai 200092, China
全文: PDF(4010 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以四氯化钛为钛源,P123为模板剂,氰胺为稳定剂,采用溶胶-凝胶法制备多孔TiO2粉体,再经900℃氨气还原氮化得到多孔TiN粉体。通过XRD,SEM,BET,TEM和SAXD等表征粉体物相组成与微观结构,并采用循环伏安法、交流阻抗法和恒流充放电法测试其电化学性能。结果表明:合成粉体颗粒近似球形,为立方TiN相。相比之下,引入P123时所合成粉体中孔径尺寸为10~50nm的介孔数量增加,并存在孔径大小为2~3nm的微小孔道,同时孔道结构有序性有所提高,这有助于提升TiN粉体的电化学性能。因此,未加入P123合成TiN粉体的比电容仅为81F·g-1,内阻R1为1.1Ω,离子扩散阻抗W1为2.5Ω。引入P123合成TiN粉体的比电容提升到95F·g-1R1W1均有所减小,分别为0.9Ω和0.06Ω。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
呼世磊
刘盼
崔燚
倪洁
吕东风
魏恒勇
卜景龙
关键词 多孔TiN粉体P123还原氮化电化学    
Abstract:The porous TiO2 powders were prepared by sol-gel method using titanium tetrachloride as titanium source, P123 as template agent and cyanamide as stabilizer agent, respectively. The porous TiN powders were synthesized via reduction and nitridation of the porous TiO2 powders at 900℃ in NH3. The phase composition and microstructure of the porous TiN powders were characterized by the XRD, SEM, BET, TEM and SAXD. The electrochemistry performance of the porous TiN powders was evaluated through the cyclic voltammetry, AC impedance and constant current charge-discharge techniques. The results show that the porous powders have approximate spherical particles with cubic TiN phase. Compared to the porous TiN powders without P123 adding, the mesopores with pore diameter range of 10-50nm increased in the porous TiN powders with P123 adding. There are also some pores with size range of 2-3nm. Meanwhile the porous TiN powders with P123 adding exhibit more ordered mesopores. This porous structure can improve the electrochemistry performance of the TiN powders. As a result, for the porous TiN powders without P123 adding, the specific capacitance is 81F·g-1. The internal resistance R1 is 1.1Ω, and the ion diffusion impedance W1 is 2.5Ω. For the porous TiN powders with P123 adding, the specific capacitance is increased to 95F·g-1, the R1 and W1 value are decreased to 0.9Ω and 0.06Ω, respectively.
Key wordsporous TiN powder    P123    reduction and nitridation    electrochemistry
收稿日期: 2018-05-10      出版日期: 2019-09-18
中图分类号:  TB34  
  O614.41+1  
基金资助: 
通讯作者: 魏恒勇(1981-),男,博士,教授,主要从事氮化物材料合成及应用研究,联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学(063210),E-mail:why_why2000@163.com     E-mail: why_why2000@163.com
引用本文:   
呼世磊, 刘盼, 崔燚, 倪洁, 吕东风, 魏恒勇, 卜景龙. P123对多孔TiN粉体孔结构及电化学性能的影响[J]. 材料工程, 2019, 47(9): 93-100.
HU Shi-lei, LIU Pan, CUI Yi, NI Jie, LYU Dong-feng, WEI Heng-yong, BU Jing-long. Effect of P123 on pore structure and electrochemical performance of porous TiN powders. Journal of Materials Engineering, 2019, 47(9): 93-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000533      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/93
[1] 金英华. 超级电容器的性能研究与状态分析[D]. 大连:大连理工大学, 2013. JIN Y H. Performance research and state analysis of supercapacitor[D]. Dalian:Dalian University of Technology, 2013.
[2] LU X F, LI G R, TONG Y X. A review of negative electrode materials for electrochemical supercapacitors[J]. Science China Technological Sciences, 2015, 58(11):1799-1808.
[3] LEE S W, YABUUCHI N, GALLANT B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5(7):531-537.
[4] 常月琪,董杉木,周新红,等. 纳米结构过渡金属氮化物用于电化学储能器件[J]. 硅酸盐学报, 2016, 44(8):1248-1258. CHANG Y Q, DONG S M, ZHOU X H, et al. Nano-structured transition metal nitrides for electrochemical energy storage devices[J].Journal of The Chinese Ceramic Society, 2016, 44(8):1248-1258.
[5] MOON G D, JI B J, DAHL M, et al. Nitridation and layered assembly of hollow TiO2, shells for electrochemical energy storage[J]. Advanced Functional Materials, 2014, 24(6):848-856.
[6] LU X H, WANG G M, ZHAI T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters, 2012, 12(10):5376.
[7] XIE Y B, WANG Y, DU H X. Electrochemical capacitance performance of titanium nitride nanoarray[J].Materials Science and Engineering B:Solid-State Materials for Advanced Technology, 2013, 178(20):1443-1451.
[8] ZHU D Z, WANG Y W, GAN L H, et al. Nitrogen-containing carbon microspheres for supercapacitor electrodes[J]. Electrochimica Acta, 2015, 158:166-174.
[9] ACHOUR A, PORTO R L, SOUSSOU M A, et al. Titanium nitride films for micro-supercapacitors:effect of surface chemistry and film morphology on the capacitance[J]. Journal of Power Sources, 2015, 300:525-532.
[10] 张荣国,熊洪超,雷家珩,等. 介孔材料的应用前景及其研究进展[J]. 无机盐工业, 2005, 3(6):5-7. ZHANG R G, XIONG H C, LEI J H, et al. The latest research development of mesoporous materials and their application prospect[J]. Inorganic Chemicals Industry, 2005, 3(6):5-7.
[11] 秦勇,储富强,陶永新,等. 一种球形金属氮化物材料及其制备方法与应用:CN103021672A[P]. 2013-04-03. QIN Y, CHU F Q, TAO Y X, et al. A spherical metal nitride material and its preparation and application:CN 103021672A[P]. 2013-04-03.
[12] JUN Y S, HONG W H, ANTONIETTI M, et al. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites[J]. Advanced Materials, 2010, 21(42):4270-4274.
[13] RAMASAMY E, JO C, ANTHONYSAMY A, et al. Soft-template simple synthesis of ordered mesoporous titanium nitride-carbon nanocomposite for high performance dye-sensitized solar cell counter electrodes[J]. Chemistry of Materials, 2012, 24(9):1575-1582.
[14] 刘会兴. 氨气还原氮化法制备介孔TiN粉体的研究[D]. 唐山:华北理工大学, 2016. LIU H X. Synthesis of mesoporous TiN powder via ammonia reduction nitridation reaction[D]. Tangshan:North China University of Science and Technology, 2016.
[15] 黄丛聪. 掺杂微/介孔碳材料用于超级电容器的性能研究[D].沈阳:东北大学, 2014. HUANG C C. Research on the performance of the doped micro/mesoporous carbons for supercapacitors[D].Shenyang:Northeastern University,2014.
[16] 商超群,杨海燕,周新红,等. 同轴静电纺丝法制备TiN@MnO纤维及其电化学性能研究[J]. 电化学, 2012, 18(3):257-263. SHAN C Q, YANG H Y, ZHOU X H, et al. Preparation and electrochemical performance of TiN@MnO fibers by coaxial electrospinning[J]. Journal of Electrochemistry,2012,18(3):257-263.
[17] MADHUGIRI S, SUN B, SMIRNIOTIS P G, et al. Electrospun mesoporous titanium dioxide fibers[J]. Microporous & Mesoporous Materials, 2004, 69(1):77-83.
[18] CHOI D, KUMTA P N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2006, 153(12):A2298-A2303.
[19] WANG D W, LI F, LIU M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J].Angewandte Chemie,2008,47(2):373.
[20] 米娟,李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014, 38(7):1394-1398. MI J, LI W C. Capacitance calculation of supercapacitors based on different test technologies[J]. Chinese Journal of Power Sources, 2014, 38(7):1394-1398
[21] ZHOU K, ZHOU W J, YANG L J, et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization:a general and effective approach[J]. Advanced Functional Materials, 2016, 25(48):7530-7538.
[22] SUN G H, LI K X, SUN C G. Electrochemical performance of electrochemical capacitors using Cu(Ⅱ)-containing ionic liquid as the electrolyte[J]. Microporous & Mesoporous Materials, 2010, 128(1/3):56-61.
[23] DONG S M, CHEN X, GU L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Applied Materials & Interfaces, 2011, 3(1):93-98
[24] SUN D F, LANG J W, YAN X B, et al. Fabrication of TiN nanorods by electrospinning and their electrochemical properties[J]. Journal of Solid State Chemistry, 2011,184:1333-1338.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[6] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[7] 成明, 杨继凯, 郝志旭, 亢嘉琪, 王新, 王国政, 宦克为. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48(10): 163-168.
[8] 林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
[9] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[10] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[11] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[12] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[13] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[14] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[15] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn