Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (1): 128-135    DOI: 10.11868/j.issn.1001-4381.2018.000310
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器
陈玮, 孙晓刚(), 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成
南昌大学 机电工程学院, 南昌 330031
AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs hybrid capacitors
Wei CHEN, Xiao-gang SUN(), Hao HU, Jie WANG, Xu LI, Guo-dong LIANG, Ya-pan HUANG, Cheng-cheng WEI
College of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(5586 KB)   HTML ( 28 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

以钛酸锂(Li4Ti5O12)/多壁碳纳米管(MWCNTs)复合材料为负极、活性炭(AC)/镍钴锰酸锂(Li(NiCoMn)O2)复合材料为正极,组装成混合型电容器并研究其电化学性能。利用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射仪(XRD),拉曼光谱仪(Raman),热重分析仪(TGA)对电极材料进行分析,通过恒流充放电(GCD)和交流阻抗谱(EIS)研究混合型电容器的电化学性能。结果表明:掺杂适量MWCNTs和镍钴锰酸锂可提高电容器的电化学性能。当MWCNTs质量分数为5%时,在电流密度为0.1 A/g下恒流充放电时比容量达161.5 mAh/g。在0.1~1 A/g时,最大功率密度和最大能量密度分别为993.2 W/kg和52.2 Wh/kg。5000周次恒流充放电循环后,容量保持率在92.2%左右,库仑效率仍有99.1%,展现出较高的能量密度和功率密度,并具有优异的循环性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈玮
孙晓刚
胡浩
王杰
李旭
梁国东
黄雅盼
魏成成
关键词 多壁碳纳米管镍钴锰酸锂钛酸锂活性炭混合电容    
Abstract

The hybrid capacitors were assembled by using lithium titanate/multi-walled carbon nanotubes composite as anode and activated carbon/nickel cobalt manganese acid lithium composite as cathode. The electrode materials were analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractomer (XRD), Raman spectrometer (Raman) and thermal gravimetric analyzer (TGA). The electrochemical performance of hybrid capacitors was tested by galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results indicate that the addition of multi-walled carbon nanotubes and lithium nickel cobalt manganese oxide can greatly improve the electrochemical performance of hybrid capacitors. The hybrid capacitors achieve a specific capacitance of 161.5 mAh/g at the current density of 0.1 A/g with an additive of 5% (mass fraction) multi-walled carbon nanotubes. The maximum power density and energy density reach 993.2 W/kg and 52.2 Wh/kg in the current range of 0.1-1 A/g, respectively. The continuous galvanostatic charge-discharge cycling tests reveal that the hybrid capacitors maintain capacitance rate retention of 92.2% and Coulomb efficiency of 99.1% after 5000 cycles. The hybrid capacitors show an excellent cycle performance with high energy and power density.

Key wordsmulti-walled carbon nanotubes    nickel cobalt manganese acid lithium    lithium titanate    activated carbon    hybrid capacitor
收稿日期: 2018-03-23      出版日期: 2020-01-09
中图分类号:  O646  
基金资助:江西省科技厅科研项目(20142BBE50071);江西省教育厅落地计划项目(KJD13006)
通讯作者: 孙晓刚     E-mail: xiaogangsun@163.com
作者简介: 孙晓刚(1957—), 男, 教授, 研究方向为碳纳米管及锂离子电池, 联系地址:江西省南昌市红谷滩新区南昌大学前湖校区机电工程学院(330031), E-mail:xiaogangsun@163.com
引用本文:   
陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
Wei CHEN, Xiao-gang SUN, Hao HU, Jie WANG, Xu LI, Guo-dong LIANG, Ya-pan HUANG, Cheng-cheng WEI. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs hybrid capacitors. Journal of Materials Engineering, 2020, 48(1): 128-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000310      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/128
Fig.1  混合型电容器的内部结构图
Fig.2  镍钴锰酸锂(a)和钛酸锂(b)的XRD谱图
Fig.3  MWCNTs石墨化前后XRD谱图(a)和Raman谱图(b)
Fig.4  MWCNTs石墨化前后TGA曲线
Fig.5  正负极材料的微观形貌
(a)镍钴锰酸锂的SEM图;(b)钛酸锂的SEM图;(c)石墨化后MWCNTs的SEM图;(d)石墨化后MWCNTs的TEM图;(e)AC/NCM的SEM图;(f)Li4Ti5O12/MWCNTs的SEM图
Fig.6  不同组分电极材料的恒流充放电与倍率性能
(a)恒流充电;(b)恒流放电;(c)倍率性能
Fig.7  不同MWCNTs含量的混合型电容器在不同电流密度下的恒流充放电曲线,放电比容量图和Ragone图
(a)0%MWCNTs;(b)5%MWCNTs;(c)10%MWCNTs;(d)20%MWCNTs;(e)放电比容量图;(f)Ragone图
Fig.8  不同MWCNTs含量的混合型电容器的电化学交流阻抗谱图
Fig.9  不同MWCNTs含量的混合型电容器的充放电循环性能
(a)不同MWCNTs含量的容量保持率;(b)含5%MWCNTs的循环性能;(c)含5%MWCNTs的充放电曲线
1 MILLER J R , SIMON P . Materials science:electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
2 KRAUSE A , KOSSYREV P , OLJACA M , et al. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black[J]. Journal of Power Sources, 2011, 196 (20): 8836- 8842.
doi: 10.1016/j.jpowsour.2011.06.019
3 LIU C , KOYYALAMUDI B B , LI L , et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors[J]. Carbon, 2016, 109, 163- 172.
doi: 10.1016/j.carbon.2016.07.071
4 SMITH P H , SEPE R B , WATERMAN K G , et al. Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications[J]. Journal of Power Sources, 2016, 327, 495- 506.
doi: 10.1016/j.jpowsour.2016.07.035
5 AMATUCCI G G , BADWAY F , PASQUIER A D , et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148 (8): A930- A939.
doi: 10.1149/1.1383553
6 HU X B , HUAI Y J , LIN Z J , et al. A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor[J]. Journal of the Electrochemical Society, 2007, 154 (11): 1026- 1030.
doi: 10.1149/1.2779947
7 RONG C , CHEN S , HAN J , et al. Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4[J]. Journal of Renewable & Sustainable Energy, 2015, 7 (2): 3243.
8 ZHANG S L , MA L H , LI X G , et al. Research on lithium ion battery material LiCoO2 for hybrid supercapacitor[J]. Advanced Materials Research, 2011, 287/290, 1565- 1568.
doi: 10.4028/www.scientific.net/AMR.287-290.1565
9 NI J , HUANG Y , GAO L . A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. Journal of Power Sources, 2013, 223, 306- 311.
doi: 10.1016/j.jpowsour.2012.09.047
10 WANG J , SHEN L , LI H , et al. Mesoporous Li4Ti5O12 /carbon nanofibers for high-rate lithium-ion batteries[J]. Journal of Alloys & Compounds, 2014, 587 (7): 171- 176.
11 LIN Z , ZHU W , WANG Z , et al. Synthesis of carbon-coated Li4Ti5O12, nanosheets as anode materials for high-performance lithium-ion batteries[J]. Journal of Alloys & Compounds, 2016, 687, 232- 239.
12 BELHAROUAK I , KOENIG G M , AMINE K . Electrochemistry and safety of Li4Ti5O12, and graphite anodes paired with LiMn2O4, for hybrid electric vehicle Li-ion battery applications[J]. Journal of Power Sources, 2011, 196 (23): 10344- 10350.
doi: 10.1016/j.jpowsour.2011.08.079
13 LEE B G , LEE S H . Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density[J]. Journal of Power Sources, 2017, 343, 545- 549.
doi: 10.1016/j.jpowsour.2017.01.094
14 DSOKE S , FUCHS B , GUCCIARDI E , et al. The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12[J]. Journal of Power Sources, 2015, 282, 385- 393.
doi: 10.1016/j.jpowsour.2015.02.079
15 DECAUX C , LOTA G , RAYMUNDOPINERO E , et al. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane) sulfonimide-based electrolyte[J]. Electrochimica Acta, 2012, 86 (1): 282- 286.
16 卢振明, 赵东林, 刘云芳, 等. 石墨化处理对碳纳米管结构的影响[J]. 材料热处理学报, 2005, 26 (6): 9- 11.
16 LU Z M , ZHAO D L , LIU Y F , et al. The influence of graphitization on the structure of carbon nanotubes[J]. Transactions of Materials and Heat Treatment, 2005, 26 (6): 9- 11.
17 张琳琳, 许钫钫, 冯景伟, 等. 石墨化对碳纳米管结构与电学性能的影响[J]. 无机材料学报, 2009, 24 (3): 535- 538.
17 ZHANG L L , XU F F , FENG J W , et al. Effect of graphitization on the structures and conducting property of carbon nanotubes[J]. Journal of Inorgan Materials, 2009, 24 (3): 535- 538.
18 HSIAO K C , LIAO S C , CHEN J M . Microstructure effect on the electrochemical property of LiTiO as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53 (24): 7242- 7247.
doi: 10.1016/j.electacta.2008.05.002
19 CAI M Y , SUN X G , CHEN W , et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode[J]. Journal of Materials Science, 2018, 53 (1): 749- 758.
doi: 10.1007/s10853-017-1524-5
20 DOKKO K , FUJITA Y , MOHAMEDI M , et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode:part Ⅱ disordered carbon[J]. Electrochimica Acta, 2001, 47 (6): 933- 938.
doi: 10.1016/S0013-4686(01)00809-X
21 KOTZ R , CARLEN M . Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45 (15/16): 2483- 2498.
[1] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[2] 吴冰, 刘磊, 王献志, 肖潇, 杨豹, 赵锦涛, 古成前, 马雷. Y3+掺杂Li4Ti5O12负极材料的电荷输运特性及电化学性能研究[J]. 材料工程, 2022, 50(10): 102-110.
[3] 廉恬柔, 卢玉晓, 吴冰, 石光跃, 马蕾, 刘磊, 娄建忠. 纳米级Li4Ti5O12负极材料的制备及其输运特性[J]. 材料工程, 2021, 49(3): 59-66.
[4] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[5] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[6] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[7] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[8] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[9] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[10] 张浩, 黄新杰, 宗志芳, 刘秀玉. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6): 67-72.
[11] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[12] 刘强, 柯黎明, 刘奋成, 黄春平. 多壁碳纳米管增强铝基复合材料的高温力学性能[J]. 材料工程, 2016, 44(4): 20-25.
[13] 郝勇敢, 邵先坤, 唐海娣, 汪涛, 刘佳佳, 李本侠. 石蜡/TiO2/活性炭复合相变材料的制备及其性能[J]. 材料工程, 2016, 44(11): 51-55.
[14] 代士维, 张乐天, 李俊, 乔新峰, 马跃. 蒙脱土/碳纳米管组成对聚乙烯复合材料性能的影响[J]. 材料工程, 2015, 43(10): 7-13.
[15] 郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn