Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (1): 98-107    DOI: 10.11868/j.issn.1001-4381.2018.000157
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响
林梦晓1,2,3, 张杰2,3,*(), 蒋全通2,3, 李佳润2, 路东柱2,3, 侯保荣2,3, 孙园园4
1 上海海洋大学 海洋生态与环境学院, 上海 201306
2 中国科学院海洋研究所中国科学院海洋环境腐蚀与生物污损重点实验室, 山东 青岛 266071
3 青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室, 山东 青岛 266237
4 中国科学院海洋研究所 中国科学院实验海洋生物学重点实验室, 山东 青岛 266071
Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater
Meng-xiao LIN1,2,3, Jie ZHANG2,3,*(), Quan-tong JIANG2,3, Jia-run LI2, Dong-zhu LU2,3, Bao-rong HOU2,3, Yuan-yuan SUN4
1 College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
2 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
3 Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
4 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
全文: PDF(5924 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用X射线衍射、扫描电子显微镜、X射线能谱仪等表面分析技术以及电化学技术,以稀土镁合金Mg-3Y-1.5Nd为基体,研究小球藻对其腐蚀行为的影响。结果表明:含小球藻培养液和不含小球藻培养液的镁合金表面主要腐蚀产物均为Mg(OH)2,Mg3(PO4)2以及Mg2(OH)3Cl;含小球藻培养液的镁合金表面腐蚀产物中镁元素的占比较未含小球藻要小(29.6%vs 39.8%);腐蚀产物存在疏松的结构有利于腐蚀性离子侵入,促进镁合金的进一步腐蚀;小球藻的光合作用导致生物膜保护层下出现高浓度的溶解氧,使氧还原阴极电流变大,从而增大Mg-3Y-1.5Nd合金的腐蚀速率。综上所述,当小球藻存在时,Mg-3Y-1.5Nd合金受到的腐蚀更为严重。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林梦晓
张杰
蒋全通
李佳润
路东柱
侯保荣
孙园园
关键词 Mg-3Y-1.5Nd合金小球藻微生物腐蚀电化学    
Abstract

The effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in f/2 culture medium was studied by means of X-ray diffraction, scanning electron microscope, energy dispersive analysis system of X-ray and other electrochemistry test. Results show that the main corrosion products on the surface of alloy with and without chlorella vulgaris are Mg (OH)2, Mg3 (PO4)2 and Mg2 (OH)3Cl; Mg and O are present on the specimen surface, and the content of Mg in culture medium with chlorella vulgaris (29.6%) is lower than that without chlorella vulgaris (39.8%); and corrosive ions invade the loose corrosion product structure and promote further corrosion of the alloy; the high O2 concentration produced by the photosynthesis of chlorella vulgaris results in the increase of local O2 concentration underneath the biofilm, which adds oxygen reduction cathodic currents and enhances corrosion. It is conduded that the average corrosion rate in the presence of chlorella vulgaris is more serious than that in the absence of chlorella vulgaris.

Key wordsMg-3Y-1.5Nd alloy    chlorella vulgaris    microbiological corrosion    electrochemistry
收稿日期: 2018-02-07      出版日期: 2020-01-09
中图分类号:  TG171  
基金资助:国家自然科学基金资助项目(41376003);国家自然科学基金资助项目(41006054);中国科学院战略性先导科技专项(A类)(XDA13040405)
通讯作者: 张杰     E-mail: zhangjie@qdio.ac.cn
作者简介: 张杰(1976—), 男, 研究员, 博士, 主要从事海洋腐蚀与防护的研究, 联系地址:山东省青岛市市南区南海路7号中国科学院海洋研究所(266071), E-mail:zhangjie@qdio.ac.cn
引用本文:   
林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
Meng-xiao LIN, Jie ZHANG, Quan-tong JIANG, Jia-run LI, Dong-zhu LU, Bao-rong HOU, Yuan-yuan SUN. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater. Journal of Materials Engineering, 2020, 48(1): 98-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000157      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/98
f/2 microelement solution f/2 vitamin solution f/2 culture solution
Composition Content Composition Content Composition Content
ZnSO4·4H2O 23 mg Vitamin B12 0.5 mg NaNO3 74.8 mg
CuSO4·5H2O 10 mg Vitamin B1 100 mg NaH2PO4 4.4 mg
FeC6H5O7·5H2O 3.9 mg Vitamin H 0.5 mg Na2SiO3·9H2O 13 mg
CoCl2·6H2O 12 mg Purified water 1 L f/2 microelement solution 1 mL
Na2MoO4·2H2O 7.3 mg f/2 vitamin solution 1 mL
MnCl4·4H2O 178 mg Seawater 1 L
Na2EDTA 4.35 mg
Purified water 1 L
Table 1  f/2培养液成分
Fig.1  电化学实验体系
Fig.2  Mg-3Y-1.5Nd合金的XRD图谱
Fig.3  Mg-3Y-1.5Nd合金在不含小球藻和含小球藻的f/2培养液中浸泡不同时间的平均失重速率
Fig.4  Mg-3Y-1.5Nd合金在含小球藻(1)和不含小球藻(2)的f/2培养液中浸泡不同时间后去除腐蚀产物后的表面腐蚀形貌
(a)8 h;(b)16 h;(c)32 h;(d)48 h
Fig.5  Mg-3Y-1.5Nd在不含小球藻(a)和含小球藻(b)的f/2培养液中浸泡50 h后的EDS图谱
Fig.6  Mg-3Y-1.5Nd在不含小球藻(a)和含小球藻(b)的f/2培养液中浸泡50 h后的XRD图
Fig.7  Mg-3Y-1.5Nd合金在含小球藻和不含小球藻的f/2培养液中浸泡不同时间的的电化学阻抗图
(a)10 min;(b)2 h;(c)12 h;(d)24 h;(e)36 h;(f)48 h
Fig.8  Mg-3Y-1.5Nd合金表面溶解的物理-化学特性模型[32]
Fig.9  拟合图 7电化学阻抗图的等效电路图
(a)两个时间常数[Rs (Qf (Rf (Rct Qdl)))];(b)3个时间常数[Rs (Qf (Rf (Rct Qdl)) (RLMg+ LMg+))];(c)两个时间常数[Rs (Qdl Rct (RLMg+ LMg+))]
Fig.10  Mg-3Y-1.5Nd合金在不同条件下浸泡50 h后的极化曲线
Culturemedium ba/(V·dec) bc/(V·dec) Ecorr vs SCE/V Icorr/(μA·cm-2)
With chlorellavulgaris 0.118 -0.276 -1.499 178.094
Without chlorellavulgaris 0.082 -0.267 -1.494 34.392
Table 2  Mg-3Y-1.5Nd合金在含小球藻和不含小球藻条件下浸泡50 h后的极化曲线拟合电化学参数
Fig.11  Mg-3Y-1.5Nd合金在含小球藻的f/2培养液中的腐蚀模型[18]
1 ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89, 92- 193.
doi: 10.1016/j.pmatsci.2017.04.011
2 张津, 章宗和. 镁合金及应用[M]. 北京: 化学工业出版社, 2004.
2 ZHANG J , ZHANG Z H . Magnesium alloy and application[M]. Beijing: Chemical Industry Press, 2004.
3 SONG G L , SHI Z . Corrosion mechanism and evaluation of anodized magnesium alloys[J]. Corrosion Science, 2014, 85, 126- 140.
doi: 10.1016/j.corsci.2014.04.008
4 张新, 张奎. 镁合金腐蚀行为及机理研究进展[J]. 腐蚀科学与防护技术, 2015, 27 (1): 78- 84.
4 ZHANG X , ZHANG K . Progresses in corrosion behavior and mechanism of magnesium alloys[J]. Corrosion Science and Protection Technology, 2015, 27 (1): 78- 84.
5 霍东兴, 梁精龙, 李慧, 等. 镁合金耐腐蚀性的研究进展[J]. 热加工工艺, 2017, 14, 44- 47.
5 HUO D X , LIANG J L , LI H , et al. Research progress on corrosion resistance of magnesium alloy[J]. Hot Working Technology, 2017, 14, 44- 47.
6 白志玲, 秦丙克. 镁合金腐蚀性能研究进展[J]. 科技广场, 2017, (3): 168- 170.
6 BAI Z L , QIN B K . Research progress on the corrosion resistance of magnesium alloy[J]. Science Mosaic, 2017, (3): 168- 170.
7 罗双, 马正青. 合金元素Nd对AZ系镁合金牺牲阳极材料耐腐蚀和电化学性能的影响[J]. 材料保护, 2016, 49 (8): 12- 19.
7 LUO S , MA Z Q . Influence of Nd element on corrosion and electrochemical performance of AZ magnesium alloy as sacrificial anode material[J]. Materials Protection, 2016, 49 (8): 12- 19.
8 张瑜. AE45稀土镁合金薄带的制备及其性能研究[D].鞍山: 辽宁科技大学, 2018.
8 ZHANG Y. Fabrication of AE45 magnesium alloy sheet and study on its properties[D]. Anshan: University of Science and Technology Liaoning, 2018.
9 LIU M , SCHMUTZ P , UGGOWITZER P J , et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corrosion Science, 2010, 52 (11): 3687- 3701.
doi: 10.1016/j.corsci.2010.07.019
10 徐玉磊, 张奎. 微量钇对压铸AZ91D镁合金组织及力学性能的影响[J]. 热加工工艺, 2018, 47 (1): 79- 87.
10 XU Y L , ZHANG K . Effect of minor yttrium on microstructure and mechanical properties of die casting AZ91D magnesium alloy[J]. Hot Working Technology, 2018, 47 (1): 79- 87.
11 ZHANG T , MENG G , SHAO Y , et al. Corrosion of hot extrusion AZ91 magnesium alloy. part Ⅱ:effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corrosion Science, 2011, 53 (9): 2934- 2942.
doi: 10.1016/j.corsci.2011.05.035
12 JIANG Q . Effect of the precipitated phases on corrosion behavior of Mg-Y-Nd ternary alloy[J]. International Journal of Electrochemical Science, 2017, 12, 10199- 10210.
13 JIANG Q T , LI J R , MA X M , et al. The relationship between microstructure and corrosion behaviors of Mg-3Y-xNd alloys (x=0.5, 1.0, 1.5 wt%)[J]. Materials and Corrosion, 2016, 67 (8): 876- 881.
doi: 10.1002/maco.201508741
14 ZHU X , LIU Y , WANG Q , et al. Influence of sulfate-reducing bacteria on the corrosion residual strength of an AZ91D magnesium alloy[J]. Materials, 2014, 7 (10): 7118- 7129.
doi: 10.3390/ma7107118
15 LIU Y , WANG Q , SONG Y , et al. A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria[J]. Journal of Alloys and Compounds, 2009, 473 (1/2): 550- 556.
16 LANDOULSI J , COOKSEY K E , DUPRES V . Review-interactions between diatoms and stainless steel:focus on biofouling and biocorrosion[J]. Biofouling, 2011, 27 (10): 1109- 1124.
17 LIU S , WANG Y , ZHANG D , et al. Electrochemical behavior of 316L stainless steel in f/2 culture solutions containing chlorella vulgaris[J]. International Journal of Electrochemical Science, 2013, 8 (4): 5330- 5342.
18 LIU H , XU D , DAO A Q , et al. Study of corrosion behavior and mechanism of carbon steel in the presence of chlorella vulgaris[J]. Corrosion Science, 2015, 101, 84- 93.
doi: 10.1016/j.corsci.2015.09.004
19 田丰, 白秀琴, 贺小燕, 等. 海洋环境下金属材料微生物腐蚀研究进展[J]. 表面技术, 2018, 47 (8): 191- 205.
19 TIAN F , BAI X Q , HE X Y , et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018, 47 (8): 191- 205.
20 JIA R , YANG D , XU D , et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing, pseudomonas aeruginosa, biofilm[J]. Bioelectrochemistry, 2017, 118, 38- 46.
doi: 10.1016/j.bioelechem.2017.06.013
21 王蕾.两株典型真菌对AZ31B镁合金的腐蚀行为影响研究[D].昆明: 云南大学, 2015.
21 WANG L. The effect of two typical fungi on the corrosion of AZ31B magnesium alloy[D]. Kunming: Yunnan University, 2015.
22 王强, 刘耀辉, 宋雨来, 等. 基于固体培养基(SCM)的镁合金的微生物腐蚀[J]. 吉林大学学报(工学版), 2009, 39 (3): 604- 607.
22 WANG Q , LIU Y H , SONG Y L , et al. Microbiologically influenced corrosion of magnesium alloy based on solid culture medium[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (3): 604- 607.
23 ZHANG T , SHAO Y , MENG G , et al. Corrosion of hot extrusion AZ91 magnesium alloy:Ⅰ -relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53 (5): 1960- 1968.
doi: 10.1016/j.corsci.2011.02.015
24 JIA R , YANG D , XU J , et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing, pseudomonas aeruginosa, biofilm under organic carbon starvation[J]. Corrosion Science, 2017, 127, 1- 9.
doi: 10.1016/j.corsci.2017.08.007
25 LI J , JIANG Q , SUN H , et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution[J]. Corrosion Science, 2016, 111, 288- 301.
doi: 10.1016/j.corsci.2016.05.019
26 EDUARDO L S , SVIATLANA V L , DI M , et al. The reduction of dissolved oxygen during magnesium corrosion[J]. Chemistry Open, 2018, 7 (8): 664- 668.
27 ZHANG P , XU D , LI Y , et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101, 14- 21.
doi: 10.1016/j.bioelechem.2014.06.010
28 ATES M . Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces[J]. Progress in Organic Coatings, 2011, 71 (1): 1- 10.
doi: 10.1016/j.porgcoat.2010.12.011
29 LINDSTR M R , JOHANSSON LG , THOMPSON GE , et al. Corrosion of magnesium in humid air[J]. Corrosion Science, 2004, 46 (5): 1141- 1158.
doi: 10.1016/j.corsci.2003.09.010
30 TUNOLD R , HOLTAN H , BERGE M B H , et al. The corrosion of magnesium in aqueous solution containing chloride ions[J]. Cheminform, 1977, 17 (4): 353- 365.
31 CHEN S , WANG P , ZHANG D . Corrosion behavior of copper under biofilm of sulfate-reducing bacteria[J]. Corrosion Science, 2014, 87, 407- 415.
doi: 10.1016/j.corsci.2014.07.001
32 LI J , ZHANG B , WEI Q , et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.% NaCl solution[J]. Electrochimica Acta, 2017, 238, 156- 167.
doi: 10.1016/j.electacta.2017.03.119
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 陈达, 石宇晴, 张伟, 练美玲. 基于MXene的电化学传感研究进展[J]. 材料工程, 2022, 50(4): 85-95.
[4] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[5] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[6] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[7] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[8] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[9] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[10] 郭亚飞, 陶益杰, 梁高勇, 董梦杰, 王美慧, 郝新敏. 基于噻吩-蒽单元的无规共聚物电化学制备及其电致变色性能研究[J]. 材料工程, 2022, 50(11): 165-172.
[11] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[12] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[13] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[14] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[15] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn