1 College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China 2 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China 3 Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China 4 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
The effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in f/2 culture medium was studied by means of X-ray diffraction, scanning electron microscope, energy dispersive analysis system of X-ray and other electrochemistry test. Results show that the main corrosion products on the surface of alloy with and without chlorella vulgaris are Mg (OH)2, Mg3 (PO4)2 and Mg2 (OH)3Cl; Mg and O are present on the specimen surface, and the content of Mg in culture medium with chlorella vulgaris (29.6%) is lower than that without chlorella vulgaris (39.8%); and corrosive ions invade the loose corrosion product structure and promote further corrosion of the alloy; the high O2 concentration produced by the photosynthesis of chlorella vulgaris results in the increase of local O2 concentration underneath the biofilm, which adds oxygen reduction cathodic currents and enhances corrosion. It is conduded that the average corrosion rate in the presence of chlorella vulgaris is more serious than that in the absence of chlorella vulgaris.
ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89, 92- 193.
doi: 10.1016/j.pmatsci.2017.04.011
2
张津, 章宗和. 镁合金及应用[M]. 北京: 化学工业出版社, 2004.
2
ZHANG J , ZHANG Z H . Magnesium alloy and application[M]. Beijing: Chemical Industry Press, 2004.
3
SONG G L , SHI Z . Corrosion mechanism and evaluation of anodized magnesium alloys[J]. Corrosion Science, 2014, 85, 126- 140.
doi: 10.1016/j.corsci.2014.04.008
ZHANG X , ZHANG K . Progresses in corrosion behavior and mechanism of magnesium alloys[J]. Corrosion Science and Protection Technology, 2015, 27 (1): 78- 84.
LUO S , MA Z Q . Influence of Nd element on corrosion and electrochemical performance of AZ magnesium alloy as sacrificial anode material[J]. Materials Protection, 2016, 49 (8): 12- 19.
8
张瑜. AE45稀土镁合金薄带的制备及其性能研究[D].鞍山: 辽宁科技大学, 2018.
8
ZHANG Y. Fabrication of AE45 magnesium alloy sheet and study on its properties[D]. Anshan: University of Science and Technology Liaoning, 2018.
9
LIU M , SCHMUTZ P , UGGOWITZER P J , et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corrosion Science, 2010, 52 (11): 3687- 3701.
doi: 10.1016/j.corsci.2010.07.019
XU Y L , ZHANG K . Effect of minor yttrium on microstructure and mechanical properties of die casting AZ91D magnesium alloy[J]. Hot Working Technology, 2018, 47 (1): 79- 87.
11
ZHANG T , MENG G , SHAO Y , et al. Corrosion of hot extrusion AZ91 magnesium alloy. part Ⅱ:effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corrosion Science, 2011, 53 (9): 2934- 2942.
doi: 10.1016/j.corsci.2011.05.035
12
JIANG Q . Effect of the precipitated phases on corrosion behavior of Mg-Y-Nd ternary alloy[J]. International Journal of Electrochemical Science, 2017, 12, 10199- 10210.
13
JIANG Q T , LI J R , MA X M , et al. The relationship between microstructure and corrosion behaviors of Mg-3Y-xNd alloys (x=0.5, 1.0, 1.5 wt%)[J]. Materials and Corrosion, 2016, 67 (8): 876- 881.
doi: 10.1002/maco.201508741
14
ZHU X , LIU Y , WANG Q , et al. Influence of sulfate-reducing bacteria on the corrosion residual strength of an AZ91D magnesium alloy[J]. Materials, 2014, 7 (10): 7118- 7129.
doi: 10.3390/ma7107118
15
LIU Y , WANG Q , SONG Y , et al. A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria[J]. Journal of Alloys and Compounds, 2009, 473 (1/2): 550- 556.
16
LANDOULSI J , COOKSEY K E , DUPRES V . Review-interactions between diatoms and stainless steel:focus on biofouling and biocorrosion[J]. Biofouling, 2011, 27 (10): 1109- 1124.
17
LIU S , WANG Y , ZHANG D , et al. Electrochemical behavior of 316L stainless steel in f/2 culture solutions containing chlorella vulgaris[J]. International Journal of Electrochemical Science, 2013, 8 (4): 5330- 5342.
18
LIU H , XU D , DAO A Q , et al. Study of corrosion behavior and mechanism of carbon steel in the presence of chlorella vulgaris[J]. Corrosion Science, 2015, 101, 84- 93.
doi: 10.1016/j.corsci.2015.09.004
TIAN F , BAI X Q , HE X Y , et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018, 47 (8): 191- 205.
20
JIA R , YANG D , XU D , et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing, pseudomonas aeruginosa, biofilm[J]. Bioelectrochemistry, 2017, 118, 38- 46.
doi: 10.1016/j.bioelechem.2017.06.013
21
王蕾.两株典型真菌对AZ31B镁合金的腐蚀行为影响研究[D].昆明: 云南大学, 2015.
21
WANG L. The effect of two typical fungi on the corrosion of AZ31B magnesium alloy[D]. Kunming: Yunnan University, 2015.
WANG Q , LIU Y H , SONG Y L , et al. Microbiologically influenced corrosion of magnesium alloy based on solid culture medium[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (3): 604- 607.
23
ZHANG T , SHAO Y , MENG G , et al. Corrosion of hot extrusion AZ91 magnesium alloy:Ⅰ -relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53 (5): 1960- 1968.
doi: 10.1016/j.corsci.2011.02.015
24
JIA R , YANG D , XU J , et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing, pseudomonas aeruginosa, biofilm under organic carbon starvation[J]. Corrosion Science, 2017, 127, 1- 9.
doi: 10.1016/j.corsci.2017.08.007
25
LI J , JIANG Q , SUN H , et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution[J]. Corrosion Science, 2016, 111, 288- 301.
doi: 10.1016/j.corsci.2016.05.019
26
EDUARDO L S , SVIATLANA V L , DI M , et al. The reduction of dissolved oxygen during magnesium corrosion[J]. Chemistry Open, 2018, 7 (8): 664- 668.
27
ZHANG P , XU D , LI Y , et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101, 14- 21.
doi: 10.1016/j.bioelechem.2014.06.010
28
ATES M . Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces[J]. Progress in Organic Coatings, 2011, 71 (1): 1- 10.
doi: 10.1016/j.porgcoat.2010.12.011
29
LINDSTR M R , JOHANSSON LG , THOMPSON GE , et al. Corrosion of magnesium in humid air[J]. Corrosion Science, 2004, 46 (5): 1141- 1158.
doi: 10.1016/j.corsci.2003.09.010
30
TUNOLD R , HOLTAN H , BERGE M B H , et al. The corrosion of magnesium in aqueous solution containing chloride ions[J]. Cheminform, 1977, 17 (4): 353- 365.
31
CHEN S , WANG P , ZHANG D . Corrosion behavior of copper under biofilm of sulfate-reducing bacteria[J]. Corrosion Science, 2014, 87, 407- 415.
doi: 10.1016/j.corsci.2014.07.001
32
LI J , ZHANG B , WEI Q , et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.% NaCl solution[J]. Electrochimica Acta, 2017, 238, 156- 167.
doi: 10.1016/j.electacta.2017.03.119