Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (2): 108-113    DOI: 10.11868/j.issn.1001-4381.2018.001321
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TB17钛合金β相区动态再结晶行为及转变机理
朱鸿昌1, 罗军明1, 朱知寿2,*()
1 南昌航空大学 材料科学与工程学院, 南昌 330063
2 中国航发北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095
Dynamic recrystallization behavior and transformation mechanism in β-phase region of TB17 titanium alloy
Hong-chang ZHU1, Jun-ming LUO1, Zhi-shou ZHU2,*()
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3333 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过Gleeble-3800热压缩模拟试验机对TB17钛合金β相区进行热压缩实验,研究该合金β相区的动态再结晶行为及转变机理。结果表明:TB17钛合金在β相区变形时会发生动态回复(DRV)与动态再结晶(DRX)。不同应变速率下存在两种动态再结晶形核位置,低应变速率下主要在晶粒内部形核,高应变速率下主要在晶界附近形核。通过EBSD和TEM分析可知,在低应变速率下发生连续动态再结晶(CDRX),其发生的主要形式为亚晶合并转动。高应变速率下发生不连续动态再结晶(DDRX),发生的主要形式为晶界剪切伴随着亚晶转动。尽管两种动态再结晶的转变方式不同,其本质都是通过位错的增殖、滑移和胞状结构演化形成新的动态再结晶晶粒。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱鸿昌
罗军明
朱知寿
关键词 TB17钛合金β热变形动态回复连续动态再结晶不连续动态再结晶    
Abstract

The thermal compression experiment of TB17 titanium alloy in the β phase region was carried out by Gleeble-3800 hot compression simulator. The dynamic recrystallization behavior and transformation mechanism in the β phase region of the TB17 titanium alloy were studied. The results show that the dynamic recovery (DRV) and dynamic recrystallization (DRX) occur in the β-phase region during deformation process of the TB17 titanium alloy. There are two dynamic recrystallization nucleation sites at different strain rates. At low strain rate, it mainly nucleates inside the grains, and at high strain rate, it is near the grain boundary. According to EBSD and TEM analyses, the main mechanism happened at low strain rate is continuous dynamic recrystallization (CDRX) which mainly is controlled by sub-grain rotation. Discontinuous dynamic recrystallization (DDRX) occurs at high strain rates, the main form of deformation is grain boundary shear accompanied by sub-grain rotation. Although the two dynamic recrystallizations are transformed in different ways, the essence is to form new dynamic recrystallized grains through the propagation, slip and cell structure evolution of dislocations.

Key wordsTB17 titanium alloy    β thermal deformation    dynamic recovery    continuous dynamic recrys-tallization    discontinuous dynamic recrystallization
收稿日期: 2018-11-13      出版日期: 2020-03-03
中图分类号:  TG146.2  
基金资助:国家自然科学基金资助项目(51764041)
通讯作者: 朱知寿     E-mail: zhuzzs@126.com
作者简介: 朱知寿(1966-), 男, 研究员, 博士, 主要从事航空钛合金及其应用技术研究, 联系地址:北京市81信箱15分箱(100095), E-mail:zhuzzs@126.com
引用本文:   
朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
Hong-chang ZHU, Jun-ming LUO, Zhi-shou ZHU. Dynamic recrystallization behavior and transformation mechanism in β-phase region of TB17 titanium alloy. Journal of Materials Engineering, 2020, 48(2): 108-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001321      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/108
Fig.1  TB17钛合金原始组织
Fig.2  TB17钛合金在变形温度为920 ℃,应变速率为0.001 s-1时不同应变下的显微组织
(a)ε=0;(b)ε=0.22;(c)ε=0.69;(d)ε=1.2
Fig.3  TB17钛合金在变形温度为920 ℃,应变速率为0.1 s-1时不同应变下的显微组织
(a)ε=0;(b)ε=0.22;(c)ε=0.69;(d)ε=1.2
Fig.4  TB17钛合金在920 ℃下变形的EBSD取向图
(a)=0.001 s-1, ε=0.69;(b)=0.1 s-1, ε=0.69
Fig.5  TB17钛合金在920 ℃下变形的TEM照片
(a)=0.001 s-1, ε=0.22;(b)=0.1 s-1, ε=0.22;(c)=0.001 s-1, ε=0.69;(d)=0.1 s-1, ε=0.69
Fig.6  TB17钛合金在920 ℃时不同应变速率下晶界取向差分布直方图
(a)=0.001 s-1; (b)=0.1 s-1
1 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34 (4): 44- 50.
1 ZHU Z S . Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34 (4): 44- 50.
2 曹春晓. 钛合金在大型运输机上的应用[J]. 稀有金属快报, 2006, 25 (1): 17- 21.
doi: 10.3969/j.issn.1674-3962.2006.01.004
2 CAO C X . Applications of titanium alloys on lager transporter[J]. Rare Metals Letters, 2006, 25 (1): 17- 21.
doi: 10.3969/j.issn.1674-3962.2006.01.004
3 商国强, 朱知寿, 常辉, 等. 超高强度钛合金研究进展[J]. 稀有金属, 2011, 35 (2): 286- 291.
doi: 10.3969/j.issn.0258-7076.2011.02.024
3 SHANG G Q , ZHU Z S , CHANG H , et al. Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals, 2011, 35 (2): 286- 291.
doi: 10.3969/j.issn.0258-7076.2011.02.024
4 刘少飞, 王柯. 近β钛合金高温压缩变形过程中流变软化行为研究进展[J]. 材料工程, 2017, 45 (2): 119- 128.
4 LIU S F , WANG K . Progress in research on flow softening behavior of near β titanium alloys during hot compression deformation process[J]. Journal of Materials Engineering, 2017, 45 (2): 119- 128.
5 LIU Z Y , HUANG T T , LIU W J , et al. Dislocation mechanism for dynamic recrystallization in twin-roll casting Mg-5.51Zn-0.49Zr magnesium alloy during hot compression at different strain rates[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (2): 378- 389.
doi: 10.1016/S1003-6326(16)64126-2
6 MIURA H , OZAMA M , MOGAWA R , et al. Strain-rate effect on dynamic recrystallization at grain boundary in Cu alloy bicrystal[J]. Scripta Materialia, 2003, 48 (10): 1501- 1505.
doi: 10.1016/S1359-6462(03)00053-8
7 SAKAI T , MIURA H , GOLOBORODKO A , et al. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J]. Acta Materialia, 2009, 57, 153- 162.
doi: 10.1016/j.actamat.2008.09.001
8 TSUJI N , MATSUBARA Y , SAITO Y . Dynamic recrystallization of ferrite in interstitial free steel[J]. Scripta Materialia, 1997, 37 (4): 477- 484.
doi: 10.1016/S1359-6462(97)00123-1
9 MATSUMOTO H , KITAMURA M , LI Y P , et al. Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure[J]. Materials Science and Engineering: A, 2014, 611, 337- 344.
doi: 10.1016/j.msea.2014.06.006
10 NING Y Q , XIE B C , LIANG H Q , et al. Dynamic softening behavior of TC18 titanium alloy during hot deformation[J]. Materials & Design, 2015, 71, 68- 77.
11 WEISS I , SEMIATIN S L . Thermomechanical processing of beta titanium alloys—an overview[J]. Materials Science and Engineering: A, 1998, 243 (1/2): 46- 65.
12 欧阳德来, 鲁世强, 丘伟, 等. 铸态TB6钛合金β热变形中的动态再结晶行为[J]. 稀有金属材料与工程, 2012, 41 (3): 477- 481.
12 OUYANG D L , LU S Q , QIU W , et al. Dynamic recrystallization behavior of as-cast titanium alloy TB6 during the β process[J]. Rare Metal Materials and Engineering, 2012, 41 (3): 477- 481.
13 田宇兴, 李述军, 郝玉琳, 等. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报, 2012, 48 (7): 837- 844.
13 TIAN Y X , LI S J , HAO Y L , et al. High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy[J]. Acta Metallurgica Sinica, 2012, 48 (7): 837- 844.
14 KAIBYSHEV R , SITDIKOV O , GOLOBORODKO A , et al. Grain refinement in as-cast 7475 aluminum alloy under hot deformation[J]. Materials Science and Engineering:A, 2003, 344 (1/2): 348- 356.
15 张廷杰. 钛合金相变的电子显微镜研究(Ⅱ)——钛及其合金的两个基本相的结晶结构和它们可能产生的晶格缺陷[J]. 稀有金属材料与工程, 1989, (3): 54- 60.
15 ZHANG T J . Electron microscopy study on phase transformation of titanium alloys (Ⅱ)—the crystal structure of two basic phases of titanium and its alloys and their possible lattice defects[J]. Rare Metal Materials and Engineering, 1989, (3): 54- 60.
16 余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2010: 436- 440.
16 YU Y N . Metallurgical principle[M]. Beijing: Metallurgical Industry Press, 2010: 436- 440.
17 MIURA H , AOYAMA H , SAKAI T . Effect of grain-boundary misorientation on dynamic recrystallization of Cu-Si bicrystals[J]. Journal of the Japan Institute of Metals, 1994, 58 (3): 267- 275.
doi: 10.2320/jinstmet1952.58.3_267
18 周伟, 葛鹏, 赵永庆, 等. Ti-5553合金高温变形时动态再结晶行为[J]. 稀有金属材料与工程, 2012, 41 (8): 1381- 1384.
18 ZHOU W , GE P , ZHAO Y Q , et al. The dynamic recrystallization behavior of Ti-5553 titanium alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2012, 41 (8): 1381- 1384.
19 WARCHOMICKA F , POLETTI C , STOCKINGER M . Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr[J]. Materials Science and Engineering:A, 2011, 528 (28): 8277- 8285.
doi: 10.1016/j.msea.2011.07.068
[1] 信云鹏, 朱知寿, 王新南, 商国强, 王彦伟, 李明兵. 固溶冷却速率对全片层亚稳β钛合金α相形貌的影响[J]. 材料工程, 2022, 50(10): 80-86.
[2] 信云鹏, 朱知寿, 王新南, 商国强, 祝力伟, 李明兵, 李静, 刘格辰. 应变率对TB17钛合金亚稳β晶粒变形机制的影响[J]. 材料工程, 2020, 48(12): 141-147.
[3] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[4] 谢俊峰, 朱有利, 黄元林, 白昶. 2A12与2A11铝合金超声波焊接工艺与组织研究[J]. 材料工程, 2015, 43(3): 54-59.
[5] 俞秋景, 张伟红, 于连旭, 刘芳, 孙文儒, 胡壮麒. 铸态Inconel 625合金热加工图的建立及热变形机制分析[J]. 材料工程, 2014, 0(1): 30-34.
[6] 陶乐晓, 臧金鑫, 张坤, 陈慧琴. 新型高强Al-Zn-Mg-Cu合金的热变形行为和热加工图[J]. 材料工程, 2013, 0(1): 16-20.
[7] 何运斌, 潘清林, 刘晓艳, 李文斌. ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J]. 材料工程, 2011, 0(6): 32-38.
[8] 孙述利, 张敏刚, 何文武, 陈慧琴, 田香菊. 9%Cr耐热钢的高温热变形机制及组织演变[J]. 材料工程, 2010, 0(12): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn