2219铝合金薄壁曲面件拉形过程变形均匀性
Deformation uniformity of 2219 aluminum alloy thin-walled curved parts in stretch forming process
为改善2219铝合金薄壁拉形曲面件的变形均匀性,建立基于Hill 1990各向异性屈服准则的有限元模型,利用ABAQUS软件对曲面件的应变分布规律进行数值模拟,分析加载路径和板坯形状对拉形变形均匀性的影响规律。结果表明:加载路径和板坯形状对曲面件的变形均匀性有较大影响。采用折线路径,开始加载时使板材发生压缩失稳从而形成一定拱形,不仅可缓解左侧钳口附近的破裂倾向,还可增加曲面件右侧变形量,从而提高其变形均匀性。此外,减小变形量不足位置对应的板坯宽度,如采用中间窄板坯或左侧宽板坯,使其在拉形时所受应力增加,从而提高其变形量,也可实现变形均匀性的改善。最终,利用矩形板坯,经两次转折的实验路径进行拉形,获得了表面质量良好的高性能2219铝合金薄壁曲面件。
In order to improve the deformation uniformity of stretch formed 2219 aluminum alloy thin-walled curved parts, the finite element model based on Hill 1990 anisotropic yield criterion was established and their strain distribution was simulated numerically by using the ABAQUS software. On this basis, the effects of loading path and blank shape on the uniformity of stretching deformation were analysed. Results show that both of the loading path and the blank shape have great influence on the deformation uniformity of the curved parts. If the zigzag paths are used, the 2219 aluminum alloy sheet is compressed at the beginning of loading until it becomes to be a certain arch. In this case, not only the rupture tendency near the left clamp can be alleviated, but also the deformation on the right side of the curved part can increase, so as the deformation uniformity can be improved. Moreover, the deformation uniformity can also be improved by reducing the sheet width where the deformation is insufficient. For example, the sheet with small size in the middle or the trapezoid sheet with larger size in left is recommended. In this case, the stress increases in the narrow area during the stretching process, which makes it undergo greater deformation. In the end, the high performance 2219 aluminum alloy curved parts with good surface quality are obtained by stretch forming of rectangular sheet under a zigzag path.
拉形 / 2219铝合金 / 薄壁曲面件 / 加载路径 / 板坯形状 {{custom_keyword}} /
stretch forming / 2219 aluminum alloy / thin-walled curved part / loading path / blank shape {{custom_keyword}} /
图 8 加载路径对2219铝合金曲面件等效应变分布规律的影响(a)直线路径; (b)折线路径1;(c)折线路径2;(d)折线路径3;(e)实验用折线路径 Fig.8 Effect of loading path on the equivalent strain distribution of 2219 aluminum alloy curved parts (a)straight path; (b)zigzag path 1;(c)zigzag path 2;(d)zigzag path 3;(e)zigzag path used in experiment |
图 10 板坯形状对2219铝合金薄壁曲面件等效应变分布规律的影响(a)矩形; (b)中间窄; (c)中间宽; (d)梯形1;(e)梯形2 Fig.10 Effect of blank shape on the equivalent strain distribution of 2219 aluminum alloy thin-walled curved parts (a)rectangle; (b)narrow in the middle; (c)broad in the middle; (d)trapezoid 1;(e)trapezoid 2 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
熊焕. 低温贮箱及铝锂合金的应用[J]. 导弹与航天运载技术, 2001, (6): 33- 40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王祝堂. 长征五号火箭燃料箱铝合金打造[J]. 有色金属加工, 2017, 46 (2): 6- 9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘燕.贮箱用2219铝合金热处理工艺的研究[D].天津: 天津大学, 2013.
LIU Y. Study on the heat treatment process of the 2219 aluminum alloy for the tank[D]. Tianjin: Tianjin University, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李辉, 孙斌, 丁森. 火箭贮箱箱底瓜瓣拉深成形数值模拟[J]. 上海航天, 2012, 29 (4): 54- 58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王强, 吴建军, 张深, 等. 蒙皮拉伸成形装备及其数值模拟研究[J]. 航空制造技术, 2014, (10): 55- 60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
BLUNCK R D, KRANTZ D E. Room temperature stretch forming of scale space shuttle external tank dome gores[R]. San Diego:National Aeronautics and Space Administration, 1974:1-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李剑飞, 贾国明, 李细锋, 等. 蒙皮拉形中橘皮缺陷的研究进展[J]. 模具技术, 2018, (2): 55- 63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
何德华, 李东升, 吴志敏, 等. 蒙皮数控拉形位移加载设计方法研究[J]. 中国机械工程, 2010, 21 (2): 137- 140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
张杰刚, 李继光, 周超, 等.拉形轨迹对铝合金贮箱箱底瓜瓣拉形成形影响[C]//中国机械工程学会塑性工程学会.第十五届全国塑性工程学会年会暨第七届全球华人塑性加工技术交流会学术会议论文集.济南: 中国机械工程学会, 2017: 928-932.
ZHANG J G, LI J G, ZHOU C, et al. Effect of the trajectory on stretch forming of melon shaped bottom in aluminum alloy tank[C]//Proceedings of the 15th National Plastic Engineering Academic Annual Meeting and the 7th Global Chinese Plasticity Technology Symposium. Jinan: China Mechanical Engineering Society, 2017: 928-932.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
VOLZ M P, CHEN P S, GORTI S, et al. Development of aluminum-lithium 2195 gores by the stretch forming process[C]//National Space & Missile Materials Symposium (NSMMS). Huntsville, AL: NSMMS, 2014: 3692.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
王鹰宇. Abaqus分析用户手册——材料卷[M]. 北京: 机械工业出版社, 2018: 454- 461.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |