
碳纳米材料构建高性能锂离子和锂硫电池研究进展
吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山
材料工程 ›› 2020, Vol. 48 ›› Issue (4) : 25-35.
碳纳米材料构建高性能锂离子和锂硫电池研究进展
Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance
碳作为单一元素可形成像零维碳纳米球、一维碳纳米管、二维石墨烯等多种碳纳米结构,它们在锂离子和锂硫电池中的表现也有所不同。需要阐明的是,碳纳米管和石墨烯由于具有以下缺点不适合直接作为锂离子或锂硫电池电极材料:(1)第一次不可逆容量大,首次充放电效率低;(2)在充放电曲线中电压滞后现象严重;(3)缺少稳定的电压平台;(4)容量衰减快。科学家们一直在为获得具有更高能量密度和更广阔应用前景的锂离子电池和锂硫电池而努力,由于可充电电池的性能主要取决于阴极和阳极的性能,因此,设计先进的电极材料以及制备具有特定成分和结构的电极成为近年来的研究热点。本文综述了碳纳米材料在构建高性能锂离子、锂硫电池电极材料和特定电极方面的作用。首先,从促进电子和离子传输、固定多硫化物位置以及缓冲体积膨胀三个方面讨论了碳纳米材料在修饰电活性材料的作用;其次,从作为导电添加剂、电流集流体和导电中间层三个方面讨论了碳纳米材料在最优化非活性组分的作用;然后,从作为非导电基体上的导电相、柔性电流集流体和自支撑复合电极三个方面讨论了碳纳米材料在柔性电池设计的作用。最后,本文对碳纳米材料的未来发展趋势作了概述,兼具多种功能的碳纳米材料被认为是今后的研究重点。
Carbon solely can form a lot of nanostructures, such as zero-dimensional nanosphere, one-dimensional nanotube and two-dimensional graphene. They perform differently in Li-ion and Li-S batteries. It is worth noting that CNTs and graphene are not appropriate to be used as electroactive materials for Li-ion or Li-S batteries for four reasons. First, when CNTs and graphene are used as an anode, they often exhibit high specific capacities during the first lithiation step, but a large fraction of lithium ions is irreversibly consumed instead of reversibly stored, leading to a low Coulombic efficiency of the cell. Second, a graphene-based anode has a large voltage hysteresis in the charge/discharge curves. Third, it has been reported a CNT-based anode lacks a steady voltage plateau with large change in voltage during discharge. Fourth, despite their high initial capacities, graphene and CNT-based anodes often suffer from fast capacity decay after a few tens of cycles. Continuous efforts have been made to build better lithium batteries with a higher energy density and wider applicability, including both current state-of-the-art Li-ion batteries and near-term Li-S batteries. Because the behavior of a rechargeable battery is mainly based on the performance of its anode and cathode, designing advanced electrode materials as well as electrode with tailored compositions and structures has been the hot topic in recent years. The role of carbon nano-materials to construct electrode materials and tailored electrodes in Li-ion and Li-S batteries in high performance was reviewed in the paper from three aspects. Firstly, the role of carbon nano-materials in modifying the electroactive materials was discussed from three aspects:electron- and ion-transport facilitators, immobilization sites and volume expansion buffering. Secondly, the role of carbon nano-materials in optimizing the inactive components was considered as follows:conducting additives, current collectors and conductive interlayers. Thirdly, the role of carbon nano-materials in designing the bendable and stretchable devices are discussed from three aspects:conductive phases in nonconductive substrates, flexible current collectors and freestanding composite electrode. Finally, perspectives on future development of Li-ion and Li-S batteries were presented. It is considered that multi-functional carbon nano-materials will be main research focus in the future.
碳纳米材料 / 锂离子 / 锂硫电池 / 研究进展 {{custom_keyword}} /
carbon nano-material / Li-ion / Li-S battery / research progress {{custom_keyword}} /
图 1 碳纳米/电活性复合材料的结构模型示意图(其中红色代表电活性材料,蓝色代表碳纳米材料)[27](a)固定模型; (b)包裹模型; (c)胶囊化模型; (d)三明治模型; (e)层状模型; (f)混合模型 Fig.1 Schematic of structural models of carbon nano-materials/electroactive composites (red:electroactive materials; blue:carbon nano-materials)[27] (a)anchored model; (b)wrapped model; (c)encapsulated model; (d)sandwich-like model; (e)layered model; (f)mixed model |
图 3 氮掺杂石墨烯气凝胶改性的LiFePO4正极材料示意图[30](a)氮掺杂石墨烯气凝胶改性的LiFePO4正极材料示意图(LiFePO4纳米片为绿色,多孔的氮掺杂石墨烯气凝胶网络为灰色,充满电解液的孔隙为淡蓝色); (b)氮掺杂石墨烯气凝胶改性的LiFePO4正极材料的四种主要阻抗; (c)LiFePO4晶体中锂离子扩散示意图; (d)氮掺杂石墨烯气凝胶改性的LiFePO4正极材料制备示意图 Fig.3 Schematic of nitrogen doped graphene modified aerogel LiFePO4(LFP@N-GA) cathode material[30] (a)schematic of a battery based on LFP@N-GA cathode(LFP NPs active phase is green, the porous N-GA network is grey, and the electrolyte filled in the pores is pale blue in color); (b)illustration of the four primary resistances in LFP@N-GA cathode; (c)schematic of the Li+ diffusion process in LFP crystal; (d)preparation process of LFP@N-GA |
图 4 2%石墨烯导电添加剂的2 Ah(1)和1%石墨烯和1%炭黑导电添加剂的2.6 Ah(2)磷酸铁锂软包电池与商品导电添加剂的软包电池比较[53](a)循环性能; (b)充放电平台曲线 Fig.4 Comparasion of cycling performance(a) and charge/discharge profiles(b) of two 2.0 Ah Li-ion batteries using 2% graphene and commercial conducting additives(1) and two 2.6 Ah Li-ion batteries using 1% graphene plus 1% carbon black and commercial conducting additives(2)[53] |
图 5 来自生物灵感的同时具有疏水和亲水特性,能够促进电子的快速传输和活性物质的均匀负载,不需要任何金属导电集流体或黏结剂的NCNT-3DG电极结构[56]Fig.5 Bio-inspired NCNT-3DG with hydrophobic and hydrophilic features within the same structure, promoting a fast electron transfer and a uniform loading of active materials in a monolithic structure free of any metal current collector or binder[56] |
1 |
苏芳, 李相哲, 徐祖宏. 新一代动力锂离子电池研究进展[J]. 电源技术, 2019, 43 (5): 887- 889.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
熊凡, 张卫新, 杨则恒, 等. 高比能量锂离子电池正极材料的研究进展[J]. 储能科学与技术, 2018, 7 (4): 607- 617.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王力臻, 邹振耀, 易祖良, 等. 具有核壳结构锂离子电池正极材料的研究进展[J]. 电源技术, 2018, 42 (5): 718- 721.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘波, 张鹏, 赵金保. 锂离子动力电池及其关键材料的发展趋势[J]. 中国科学:化学, 2018, 48 (1): 18- 30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
徐文洪, 周惠来, 胡弘, 等. 锂离子动力电池产业技术发展态势分析及对策[J]. 地域研究与开发, 2016, 35 (6): 31- 36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
朱瑞, 邓卫斌, 李军, 等. 锂离子电池硅-碳负极材料的研究进展[J]. 化工新型材料, 2018, 46 (7): 34- 39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
陈志金, 张一鸣, 田爽, 等. 锂离子电池导电剂的研究进展[J]. 电源技术, 2019, 43 (2): 333- 337.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘中奎, 左阳, 马留可. 导电剂对锂离子电池性能的影响[J]. 电源技术, 2018, 42 (8): 1110- 1112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李娟, 韩广欣, 刘兴福, 等. 纳米碳导电剂在锂离子电池中的应用[J]. 电池工业, 2018, 22 (6): 323- 328.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂:缘起、现状及展望[J]. 科学通报, 2017, 62 (32): 3743- 3756.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
赵廷凯, 邓娇娇, 折胜飞, 等. 碳纳米管和石墨烯在锂离子电池负极材料中的应用[J]. 炭素技术, 2015, 34 (3): 1- 5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
李进, 单香丽, 王雪丽, 等. 介孔碳纳米微球在锂离子电池中的应用[J]. 电池, 2018, 48 (1): 49- 52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |