Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (5): 41-48    DOI: 10.11868/j.issn.1001-4381.2018.001427
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能
丁楚珩1, 侯甲彬2, 夏龙1,*(), 张昕宇1, 钟博1, 张涛1
1 哈尔滨工业大学(威海) 材料学院, 山东 威海 264209
2 山东交通学院 船舶与轮机工程学院, 山东 威海 264209
Preparation and electromagnetic wave absorption properties of SiCNW-Cf/LAS composites
Chu-heng DING1, Jia-bin HOU2, Long XIA1,*(), Xin-yu ZHANG1, Bo ZHONG1, Tao ZHANG1
1 School of Materials, Harbin Institute of Technology(Weihai), Weihai 264209, Shandong, China
2 Naval Architecture & Marine Engineering College, Shandong Jiaotong University, Weihai 264209, Shandong, China
全文: PDF(6655 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用热蒸发法,以乙炔黑为碳源,在碳纤维(Cf)布上制备不同摩尔硅碳比的SiC纳米线(SiCNW)。通过浆料浸渍及真空烧结工艺,以不同摩尔硅碳比下制备的SiCNW-Cf作为中间夹层制备SiCNW-Cf/LAS(Li2O-Al2O3-SiO2)复合材料。结果表明:随着摩尔硅碳比的减小,SiCNW的直径不断减小,产量先增加后减小,并在摩尔硅碳比为1:3时达到最高。摩尔硅碳比为1:1时,所制备的SiCNW-Cf/LAS具有对电磁波的最低反射损耗-40.9 dB(7 GHz,3 mm)。摩尔硅碳比为1:3时,所制备的SiCNW-Cf/LAS具有吸收电磁波的最大有效带宽4.61 GHz(Ku波段,1.5 mm)。SiCNW-Cf/LAS复合材料优异的吸波性能归因于其对电磁波较高的介电损耗、散射损耗以及LAS对材料与空间阻抗匹配的调整。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁楚珩
侯甲彬
夏龙
张昕宇
钟博
张涛
关键词 SiCNW-Cf/LAS不同摩尔硅碳比吸波性能电磁波损耗机理    
Abstract

SiCNW were prepared with different molar ratio of silicon to carbon on carbon fiber cloth by thermal evaporation method using acetylene black as carbon source. SiCNW-Cf/LAS(Li2O-Al2O3-SiO2) were prepared by using slurry-impregnation and vacuum sintering process with SiCNW-Cf as intermediate interlayer. The results show that as the molar ratio of silicon to carbon decreasing, the diameter of SiCNW decreases continuously, and the yield first increases and then decreases and reaches the highest when the molar ratio of silicon to carbon is 1:3. The SiCNW-Cf/LAS prepared with a molar ratio of silicon to carbon of 1:1 has a minimum reflection loss of -40.9 dB (7 GHz, 3 mm) for electromagnetic wave. The SiCNW-Cf/LAS prepared at a molar ratio of silicon to carbon of 1:3 has a maximum effective bandwidth for absorbing electromagnetic wave of 4.61 GHz (Ku band, 1.5 mm). The excellent absorbing properties of SiCNW-Cf/LAS composites can be attributed to their higher dielectric loss and scattering loss for electromagnetic wave and adjustment of LAS to material and space impedance matching.

Key wordsSiCNW-Cf/LAS    different molar ratio of silicon to carbon    absorbing property    electromag-netic wave loss mechanism
收稿日期: 2018-12-10      出版日期: 2020-05-28
中图分类号:  TB332  
基金资助:国家自然科学基金项目(51372052);国家自然科学基金项目(51772060);国家自然科学基金项目(51302050)
通讯作者: 夏龙     E-mail: xialong@hit.edu.cn
作者简介: 夏龙(1978-), 男, 副教授, 博士, 从事专业:陶瓷基复合材料, 联系地址:山东省威海市环翠区文化西路2号哈尔滨工业大学(威海)材料学院(264209), E-mail:xialong@hit.edu.cn
引用本文:   
丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
Chu-heng DING, Jia-bin HOU, Long XIA, Xin-yu ZHANG, Bo ZHONG, Tao ZHANG. Preparation and electromagnetic wave absorption properties of SiCNW-Cf/LAS composites. Journal of Materials Engineering, 2020, 48(5): 41-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001427      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/41
Fig.1  不同摩尔硅碳比产物SiCNW-Cf的XRD谱图(a),拉曼光谱(b)以及摩尔硅碳比1:1时SiCNW的TEM图(c)
Fig.2  Cf及不同摩尔硅碳比下制备的SiCNW-Cf表面形貌
(a)碳纤维;(b)1:1;(c)1:2;(d)1:3;(e)1:4;(f)1:5
Fig.3  不同摩尔硅碳比下制备的SiCNW-Cf/LAS复合材料复介电常数实部(a)及虚部(b)的变化
Fig.4  不同摩尔硅碳比烧结的SiCNW-Cf/LAS复合材料的Cole-Cole圆
(a)1:1;(b)1:2;(c)1:3;(d)1:4;(e)1:5
Fig.5  LAS的复介电常数实部(a),反射损耗曲线(b)及Cf/LAS的反射损耗曲线(c)
Fig.6  不同摩尔硅碳比烧结的SiCNW-Cf/LAS复合材料的反射衰减图
(a)1:1;(b)1:2;(c)1:3;(d)1:4;(e)1:5
Fig.7  摩尔硅碳比为1:1的SiCNW-Cf/LAS复合材料三维吸波图
Sample Minimum RL/dB Absorption bandwidth(RL < -10 dB)/GHz Thickness/mm Reference
Frequency range Frequency coverage
SiCNWs/epoxy resin -32.4 29.1-33.3 4.2 2 [12]
SiCNW-1400 -30.0 6.0-9.7 3.7 4.6 [13]
Graphite/SiC hybrid NWs -22.0 8.0-18.0 10.0 1.7 [14]
SiCNW-Cf/LAS -40.9 6.2-9.0 3.2 3 This work
Table 1  不同SiCNW试样的EM吸波性能
Fig.8  SiCNW-Cf/LAS复合材料的吸波机理图
1 刘顾, 汪刘应, 程建良, 等. 碳纳米线吸波材料研究进展[J]. 材料工程, 2015, 43 (1): 104- 112.
1 LIU G , WANG L Y , CHENG J L , et al. Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43 (1): 104- 112.
2 于丽新, 兰晓琳, 邵枫, 等. MWCNT/FeNi复合纳米线制备及其雷达微波和工频电磁波吸收性能[J]. 材料工程, 2018, 46 (8): 64- 70.
2 YU L X , LAN X L , SHAO F , et al. Preparation and radar microwave and power frequency electromagnetic wave absorption properties of MWCNT/FeNi nanowire composite[J]. Journal of Materials Engineering, 2018, 46 (8): 64- 70.
3 李志刚. 碳纳米管复合吸波材料研究进展[J]. 科技创新与应用, 2018, 23, 72- 73.
3 LI Z G . Research progress of carbon nanotube composite absorbing materials[J]. Technology Innovation and Application, 2018, 23, 72- 73.
4 LIU Q H , CAO Q , HAN B , et al. CoNi@SiO2@TiO2and CoNi@air@TiO2 microspheres with strong wideband microwave absorption[J]. Advanced Materials, 2016, 28 (3): 486- 490.
doi: 10.1002/adma.201503149
5 WEN B , CAO M S , LU M M , et al. Reduced graphene oxides:light-weight and high efficiency electromagnetic interference shielding at elevated temperatures[J]. Advanced Materials, 2014, 26 (21): 3484- 3489.
doi: 10.1002/adma.201400108
6 LV H L , JI G B , ZHANG H Q , et al. CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties[J]. Scientific Reports, 2015, 5, 18249- 18259.
doi: 10.1038/srep18249
7 LV J L , ZHAI S R , GAO C , et al. Synthesis of lightweight, hierarchical cabbage-like composites as superior electromagnetic wave absorbent[J]. Chemical Engineering Journal, 2016, 289, 261- 269.
doi: 10.1016/j.cej.2016.01.003
8 ZENG Z H , JIN H , CHEN M J , et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials, 2016, 26 (2): 303- 310.
9 WANG P , CHENG L F , ZHANG L T . Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency[J]. Chemical Engineering Journal, 2018, 338, 248- 260.
doi: 10.1016/j.cej.2017.12.008
10 LIN Y , DAI J J , YANG H B , et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018, 334, 1740- 1748.
doi: 10.1016/j.cej.2017.11.150
11 WU R B , ZHOU K , YANG Z H , et al. Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications[J]. Crystengcomm, 2013, 15 (3): 570- 576.
doi: 10.1039/C2CE26510A
12 CHIU S C , YU H C , LI Y Y . High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range[J]. Journal of Physical Chemistry C, 2010, 114 (4): 1947- 1952.
doi: 10.1021/jp905127t
13 ZHANG H Y , XU Y J , ZHOU J G , et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry C, 2015, 3 (17): 4416- 4423.
doi: 10.1039/C5TC00405E
14 WANG P , CHENG L F , ZHANG Y N , et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics[J]. Composites Part:A, 2018, 104, 68- 80.
doi: 10.1016/j.compositesa.2017.10.012
15 QIAO M T , LEI X F , MA Y , et al. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature[J]. Journal of Alloy and Compounds, 2017, 693, 432- 439.
doi: 10.1016/j.jallcom.2016.09.181
16 LAN X L , LIANG C Y , WU M S , et al. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves[J]. The Journal of Physical Chemistry C, 2018, 122 (32): 18537- 18544.
doi: 10.1021/acs.jpcc.8b05339
17 LIANG C Y , WANG Z J . Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials & Interfaces, 2017, 9 (46): 40690- 40696.
18 CAO M S , SONG W L , HOU Z L , et al. The effects of temperature and frequency on the dielectric properties electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48 (3): 788- 796.
doi: 10.1016/j.carbon.2009.10.028
19 康永. 改善SiC陶瓷纤维吸波性能途径[J]. 炭素, 2015, 4, 28- 33.
19 KANG Y . The approach to improving the absorbing properties of SiC ceramic fibers[J]. Carbon, 2015, 4, 28- 33.
20 WU H J , QU S H , LIN K J , et al. Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite[J]. Powder Technology, 2018, 333, 153- 159.
doi: 10.1016/j.powtec.2018.04.015
21 LIU T , ZHOU P H , XIE J L , et al. Electromagnetic and absorption properties of urchin-like Ni composites at microwave frequencies[J]. Journal of Applied Physics, 2012, 111 (9): 3905- 3910.
22 DENG J , LEI Y , WEN S , et al. Modeling interactions between ethyl xanthate and Fe/Cu ions using DFT/B3LYP approach[J]. International Journal of Mineral Processing, 2015, 140, 43- 49.
doi: 10.1016/j.minpro.2015.04.026
23 WANG C , HAN X J , XU P , et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98 (7): 2906.
24 WANG G Z , GAO Z , WANG G P , et al. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers[J]. Nano Research, 2014, 7 (5): 704- 716.
doi: 10.1007/s12274-014-0432-0
25 褚海荣.石墨烯复合材料吸波性能研究[D].大连: 大连理工大学, 2017.
25 ZHU H R.The research of absorbing properties of graphene composites[D].Dalian: Dalian University of Technology, 2017.
26 ZHONG B , TANG X H , HUANG X X , et al. Metal-semiconductor Zn/ZnO core-shell nanocables:facile and larger-scale fabrication, growth mechanism, oxidation behavior, and microwave absorption performance[J]. Crystengcomm, 2015, 17 (14): 2806- 2814.
doi: 10.1039/C5CE00013K
27 LV H L , JI G B , ZHANG H Q , et al. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance[J]. RSC Advances, 2015, 5 (94): 76836- 76843.
doi: 10.1039/C5RA11162E
[1] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[2] 马国庆, 陈亮, 崔正明, 李维, 官建国. 溶解乳化法制备SBS包覆FeSiAl片状吸收剂的微波电磁性能[J]. 材料工程, 2022, 50(2): 111-117.
[3] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[4] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[5] 张雪霏, 周金堂, 姚正军, 蔡海硕, 魏波. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47(10): 141-147.
[6] 礼嵩明, 蒋诗才, 望咏林, 顾涧潇, 邢丽英. “超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14.
[7] 景红霞, 李巧玲, 叶云, 裴王军. 羰基铁/钛酸钡复合材料的制备及吸波性能[J]. 材料工程, 2015, 43(7): 38-42.
[8] 李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
[9] 赵海涛, 刘瑞萍, 李成吾, 马瑞廷. 聚吡咯/Ni0.5Zn0.5Fe2O4复合物的合成与表征[J]. 材料工程, 2014, 0(12): 18-22.
[10] 唐耿平, 程海峰, 赵建峰, 楚增勇, 周永江. 空心微珠表面改性及其吸波特性[J]. 材料工程, 2005, 0(6): 11-12,35.
[11] 范真祥, 程海峰, 张长瑞, 唐耿平, 王军. 先驱体法聚硅氧烷制备SiCf/Si-O-C复合材料的性能研究[J]. 材料工程, 2005, 0(1): 8-11.
[12] 李岳, 陶冶, 刘培英, 张勤, 张通和. 纳米表面改性纤维增强树脂基复合材料吸波性能及机理研究[J]. 材料工程, 2004, 0(1): 46-48.
[13] 邢丽英, 蒋诗才, 李斌太. 含电路模拟结构陷阱式吸波复合材料研究[J]. 材料工程, 2003, 0(12): 29-32.
[14] 赵东林, 周万城. 纳米雷达波吸收剂的研究和发展[J]. 材料工程, 1998, 0(5): 3-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn