Preparation and electromagnetic wave absorption properties of SiCNW-Cf/LAS composites
Chu-heng DING1, Jia-bin HOU2, Long XIA1,*(), Xin-yu ZHANG1, Bo ZHONG1, Tao ZHANG1
1 School of Materials, Harbin Institute of Technology(Weihai), Weihai 264209, Shandong, China 2 Naval Architecture & Marine Engineering College, Shandong Jiaotong University, Weihai 264209, Shandong, China
SiCNW were prepared with different molar ratio of silicon to carbon on carbon fiber cloth by thermal evaporation method using acetylene black as carbon source. SiCNW-Cf/LAS(Li2O-Al2O3-SiO2) were prepared by using slurry-impregnation and vacuum sintering process with SiCNW-Cf as intermediate interlayer. The results show that as the molar ratio of silicon to carbon decreasing, the diameter of SiCNW decreases continuously, and the yield first increases and then decreases and reaches the highest when the molar ratio of silicon to carbon is 1:3. The SiCNW-Cf/LAS prepared with a molar ratio of silicon to carbon of 1:1 has a minimum reflection loss of -40.9 dB (7 GHz, 3 mm) for electromagnetic wave. The SiCNW-Cf/LAS prepared at a molar ratio of silicon to carbon of 1:3 has a maximum effective bandwidth for absorbing electromagnetic wave of 4.61 GHz (Ku band, 1.5 mm). The excellent absorbing properties of SiCNW-Cf/LAS composites can be attributed to their higher dielectric loss and scattering loss for electromagnetic wave and adjustment of LAS to material and space impedance matching.
LIU G , WANG L Y , CHENG J L , et al. Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43 (1): 104- 112.
YU L X , LAN X L , SHAO F , et al. Preparation and radar microwave and power frequency electromagnetic wave absorption properties of MWCNT/FeNi nanowire composite[J]. Journal of Materials Engineering, 2018, 46 (8): 64- 70.
LI Z G . Research progress of carbon nanotube composite absorbing materials[J]. Technology Innovation and Application, 2018, 23, 72- 73.
4
LIU Q H , CAO Q , HAN B , et al. CoNi@SiO2@TiO2and CoNi@air@TiO2 microspheres with strong wideband microwave absorption[J]. Advanced Materials, 2016, 28 (3): 486- 490.
doi: 10.1002/adma.201503149
5
WEN B , CAO M S , LU M M , et al. Reduced graphene oxides:light-weight and high efficiency electromagnetic interference shielding at elevated temperatures[J]. Advanced Materials, 2014, 26 (21): 3484- 3489.
doi: 10.1002/adma.201400108
6
LV H L , JI G B , ZHANG H Q , et al. CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties[J]. Scientific Reports, 2015, 5, 18249- 18259.
doi: 10.1038/srep18249
7
LV J L , ZHAI S R , GAO C , et al. Synthesis of lightweight, hierarchical cabbage-like composites as superior electromagnetic wave absorbent[J]. Chemical Engineering Journal, 2016, 289, 261- 269.
doi: 10.1016/j.cej.2016.01.003
8
ZENG Z H , JIN H , CHEN M J , et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials, 2016, 26 (2): 303- 310.
9
WANG P , CHENG L F , ZHANG L T . Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency[J]. Chemical Engineering Journal, 2018, 338, 248- 260.
doi: 10.1016/j.cej.2017.12.008
10
LIN Y , DAI J J , YANG H B , et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018, 334, 1740- 1748.
doi: 10.1016/j.cej.2017.11.150
11
WU R B , ZHOU K , YANG Z H , et al. Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications[J]. Crystengcomm, 2013, 15 (3): 570- 576.
doi: 10.1039/C2CE26510A
12
CHIU S C , YU H C , LI Y Y . High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range[J]. Journal of Physical Chemistry C, 2010, 114 (4): 1947- 1952.
doi: 10.1021/jp905127t
13
ZHANG H Y , XU Y J , ZHOU J G , et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry C, 2015, 3 (17): 4416- 4423.
doi: 10.1039/C5TC00405E
14
WANG P , CHENG L F , ZHANG Y N , et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics[J]. Composites Part:A, 2018, 104, 68- 80.
doi: 10.1016/j.compositesa.2017.10.012
15
QIAO M T , LEI X F , MA Y , et al. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature[J]. Journal of Alloy and Compounds, 2017, 693, 432- 439.
doi: 10.1016/j.jallcom.2016.09.181
16
LAN X L , LIANG C Y , WU M S , et al. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves[J]. The Journal of Physical Chemistry C, 2018, 122 (32): 18537- 18544.
doi: 10.1021/acs.jpcc.8b05339
17
LIANG C Y , WANG Z J . Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials & Interfaces, 2017, 9 (46): 40690- 40696.
18
CAO M S , SONG W L , HOU Z L , et al. The effects of temperature and frequency on the dielectric properties electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48 (3): 788- 796.
doi: 10.1016/j.carbon.2009.10.028
19
康永. 改善SiC陶瓷纤维吸波性能途径[J]. 炭素, 2015, 4, 28- 33.
19
KANG Y . The approach to improving the absorbing properties of SiC ceramic fibers[J]. Carbon, 2015, 4, 28- 33.
20
WU H J , QU S H , LIN K J , et al. Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite[J]. Powder Technology, 2018, 333, 153- 159.
doi: 10.1016/j.powtec.2018.04.015
21
LIU T , ZHOU P H , XIE J L , et al. Electromagnetic and absorption properties of urchin-like Ni composites at microwave frequencies[J]. Journal of Applied Physics, 2012, 111 (9): 3905- 3910.
22
DENG J , LEI Y , WEN S , et al. Modeling interactions between ethyl xanthate and Fe/Cu ions using DFT/B3LYP approach[J]. International Journal of Mineral Processing, 2015, 140, 43- 49.
doi: 10.1016/j.minpro.2015.04.026
23
WANG C , HAN X J , XU P , et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98 (7): 2906.
24
WANG G Z , GAO Z , WANG G P , et al. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers[J]. Nano Research, 2014, 7 (5): 704- 716.
doi: 10.1007/s12274-014-0432-0
25
褚海荣.石墨烯复合材料吸波性能研究[D].大连: 大连理工大学, 2017.
25
ZHU H R.The research of absorbing properties of graphene composites[D].Dalian: Dalian University of Technology, 2017.
26
ZHONG B , TANG X H , HUANG X X , et al. Metal-semiconductor Zn/ZnO core-shell nanocables:facile and larger-scale fabrication, growth mechanism, oxidation behavior, and microwave absorption performance[J]. Crystengcomm, 2015, 17 (14): 2806- 2814.
doi: 10.1039/C5CE00013K
27
LV H L , JI G B , ZHANG H Q , et al. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance[J]. RSC Advances, 2015, 5 (94): 76836- 76843.
doi: 10.1039/C5RA11162E