Please wait a minute...
材料工程  2020, Vol. 48 Issue (7): 36-44    DOI: 10.11868/j.issn.1001-4381.2019.000918
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
李娜1,2, 张儒静1,2, 甄真1,2, 许振华1,2, 何利民1,2
1. 中国航发北京航空材料研究院, 北京 100095;
2. 北京石墨烯技术研究院有限公司, 北京 100094
Research progress in controllable synthesis of graphene by plasma-enhanced chemical vapor deposition
LI Na1,2, ZHANG Ru-jing1,2, ZHEN Zhen1,2, XU Zhen-hua1,2, HE Li-min1,2
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Institute of Graphene Technology Co., Ltd., Beijing 100094, China
全文: PDF(3517 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 石墨烯具有超薄的结构、优异的光学和电学等性能,在晶体管、太阳能电池、超级电容器和传感器等领域具有极大的应用潜能。为更好地发展实际应用,高质量石墨烯的可控制备研究尤为重要。等离子体增强化学气相沉积(PECVD)技术具有低温和原位生长的优势,成为未来石墨烯制备方面较具潜力的发展方向之一。本文综述了PECVD技术制备石墨烯的发展,重点讨论了PECVD过程中等离子体能量、生长温度、生长基底和生长压力对石墨烯形核及生长的作用,概述了PECVD制备石墨烯的形核及聚结机制、刻蚀和边缘生长竞争两种不同机制,并指出PECVD技术制备石墨烯面临的挑战及发展。在未来的研究中,需突破对石墨烯形核及生长的控制,实现低温原位的大尺寸、高质量石墨烯薄膜的可控制备,为PECVD基石墨烯器件在电子等领域的应用奠定基础。
E-mail Alert
关键词 石墨烯等离子体增强化学气相沉积形核及生长生长机制    
Abstract:Due to its one-atom thickness,excellent optical and electrical properties, graphene has great potential applications in fields of transistors, solar cells, supercapacitors and sensors. For further development of practical applications, controllable synthesis of high-quality graphene is of great importance.Because of its advantage in in-situ growth on various substrates at low temperature, plasma-enhanced chemical vapor deposition(PECVD) has become one of the most promising strategies for the synthesis of graphene in the future. In this paper, the effect of several key factors on the growth of graphene by PECVD,such as plasma power, temperature, substrates and pressure was summarized. Two growth mechanisms including nucleation and coalescence mechanism and etching and edge growth mechanism were reviewed. Furthermore, the challenges and development of graphene were also discussed. In future work, the controllable preparation of graphene on the nucleation and growth of graphene will be essential to achieve large-area and high-quality graphene by PECVD at low temperature, laying the foundation for the application of graphene synthesized by PECVD in electronics and other fields.
Key wordsgraphene    PECVD    nucleation and growth    growth mechanism
收稿日期: 2019-10-08      出版日期: 2020-07-17
中图分类号:  TQ127.1+1  
通讯作者: 何利民(1967-),男,研究员,博士,研究方向:高温防护涂层,联系地址:北京市81信箱5分箱(100095),     E-mail:
李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
LI Na, ZHANG Ru-jing, ZHEN Zhen, XU Zhen-hua, HE Li-min. Research progress in controllable synthesis of graphene by plasma-enhanced chemical vapor deposition. Journal of Materials Engineering, 2020, 48(7): 36-44.
链接本文:      或
[1] NAIR R R,BLAKE P,GRIGORENKO A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.
[2] NOVOSELOV K S,FAL V,COLOMBO L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[3] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nat Mater,2007,6(3):183-191.
[4] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[5] NOVOSELOV K S,JIANG Z,ZHANG Y,et al.Room-temperature quantum Hall effect in graphene[J].Science,2007,315(5817):1379.
[6] HIRATA M,GOTOU T,HORIUCHI S,et al.Thin-film particles of graphite oxide 1:high-yield synthesis and flexibility of the particles[J].Carbon,2004,42(14):2929-2937.
[7] STANKOVICH S,PINER R D,CHEN X,et al.Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)[J].Journal of Materials Chemistry,2006,16(2):155-158.
[8] HERNANDEZ Y,NICOLOSI V,LOTYA M,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology,2008,3(9):563-568.
[9] LOTYA M,HERNANDEZ Y,KING P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J].Journal of the American Chemical Society,2009,131(10):3611-3620.
[10] De HEER W A,BERGER C,WU X,et al.Epitaxial graphene[J].Solid State Communications,2007,143(1/2):92-100.
[11] HUANG H,CHEN W,CHEN S,et al.Bottom-up growth of epitaxial graphene on 6H-SiC (0001)[J].ACS Nano,2008,2(12):2513-2518.
[12] LI X,CAI W,AN J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
[13] BAE S,KIM H,LEE Y,et al.Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotech-nology,2010,5(8):574-578.
[14] MOHSIN A,LIU L,LIU P,et al.Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper[J].ACS Nano,2013,7(10):8924-8931.
[15] EMTSEV K V,BOSTWICK A,HORN K,et al.Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J].Nature Materials,2009,8(3):203-207.
[16] VLASSIOUK I,REGMI M,FULVIO P,et al.Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene[J].ACS Nano,2011,5(7):6069-6076.
[17] SUN J,DENG S,GUO W,et al.Electrochemical bubbling transfer of graphene using a polymer support with encapsulated air gap as permeation stopping layer[J].Journal of Nanomaterials,2016,12(1):224-230.
[18] HWANG J,KIM M,CAMPBELL D,et al. Van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst[J].ACS Nano,2012,7(1):385-395.
[19] CHEN J,WEN Y,GUO Y,et al.Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates[J].Journal of the American Chemical Society,2011,133(44):17548-17551.
[20] WOO Y,KIM D C,JEON D Y,et al.Large-grained and highly-ordered graphene synthesized by radio frequency plasma-enhanced chemical vapor deposition[J].ECS Transactions,2009,19(5):111-114.
[21] PENG K J,WU C L,LIN Y H,et al.Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature[J].Journal of Materials Chemistry C,2013,1(24):3862-3870.
[22] WANG S,QIAO L,ZHAO C,et al.A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition[J].New Journal of Chemistry,2013,37(5):1616-1622.
[23] KIM Y S,LEE J H,KIM Y D,et al.Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition[J].Nanoscale,2013,5(3):1221-1226.
[24] TERASAWA T O.Growth of graphene on Cu by plasma enhan-ced chemical vapor deposition[J].Carbon,2012,50(3):869-874.
[25] WU T R,ZHANG X F, YUAN Q H,et al.Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys[J].Nature Mater,2016,15(12):43-47.
[26] WANG S,PEI Y,WANG X,et al.Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition[J].Journal of Physics D:Applied Physics,2010,43(45):455402-1-455402-6.
[27] ZHANG L,SHI Z,WANG Y,et al.Catalyst-free growth of nanographene films on various substrates[J].Nano Research,2011,4(3):315-321.
[28] WEI D,LU Y,HAN C,et al.Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices[J].Angewandte Chemie International Edition,2013,52(52):14121-14126.
[29] GUO L,ZHANG Z,SUN H,et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD[J].Carbon,2018,129:456-461.
[30] YANG W,CHEN G,SHI Z,et al.Epitaxial growth of single-domain graphene on hexagonal boron nitride[J].Nature Materials,2013,12(9):792-797.
[31] HASH B,MEYYAPPAN M. Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes[J].Journal of Applied Physics,2003,93(1):750-752.
[32] DELZEIT L,MCANINCH I,CRUDEN B A,et al.Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor[J].Journal of Applied Physics,2002,91(9):6027-6033.
[33] DENYSENKO I,XU S,LONG J,et al.Inductively coupled Ar/CH4/H2 plasmas for low-temperature deposition of ordered carbon nanostructures[J].Journal of Applied Physics,2004,95(5):2713-2724.
[34] MEYYAPPAN M,DELZEIT L,CASSELL A,et al.Carbon nanotube growth by PECVD:a review[J].Plasma Sources Science and Technology,2003,12(2):205-216.
[35] HIRAMATSU M,SHIJI K,AMANO H,et al.Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection[J].Applied Physics Letters,2004,84(23):4708-4710.
[36] JEON I, ANG H,LEE S H,et al.Passivation of metal surface states:microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition[J].ACS Nano,2011,5(3):1915-1920.
[37] HONG H K,KIM N Y,YOON A,et al.Synthesis of high-quality monolayer graphene by low-power plasma[J].Current Applied Physics,2019,19(1):44-49.
[38] ZHAO L,RIM K T,ZHOU H,et al.Influence of copper crystal surface on the CVD growth of large area monolayer graphene[J].Solid State Communications,2011,151(7):509-513.
[39] KIM Y S,JOO K,JERNG S K,et al.Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography[J].Nanoscale,2014,6(17):10100-10105.
[40] LIU D,YANG W,ZHANG L,et al. Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates[J].Carbon,2014,72:387-392.
[41] KIM Y,SONG W,LEE S,et al.Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor de-position[J].Applied Physics Letters,2011,98(26):263106-1-263106-3.
[42] FAN T,YAN C,LU J,et al.The effect of copper substrate's roughness on graphene growth process via PECVD[J].Materials Research Express,2018,5(4):1-17.
[43] TAKAGI D,HIBINO H,SUZUKI S,et al.Carbon nanotube growth from semiconductor nanoparticles[J].Nano Letters,2007,7(8):2272-2275.
[44] LIU W R,GAO L B,LI S S,et al.Metal-catalyst-free growth of single-walled carbon nanotubes[J].J Am Chem Soc,2009,131(6):2082-2083.
[45] HAIGH S,GHOLINIA A,JALIL R,et al.Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices[J].Nature Materials,2012,11(9):764-767.
[46] GIOVANNETTI G,KHOMYAKOV P A,BROCKS G,et al.Substrate-induced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations[J].Physical Review B,2007,76(7):073103-1-073103-4.
[47] DEAN C R,YOUNG A F,MERIC I,et al.Boron nitride substrates for high-quality graphene electronics[J].Nature Nanotechnology,2010,5(10):722-726.
[48] KRETININ A,CAO Y,TU J,et al.Electronic properties of graphene encapsulated with different two-dimensional atomic crystals[J].Nano Letters,2014,14(6):3270-3276.
[49] RYU H J,KIM S,HHONG S H.Effect of deposition pressure on bonding nature in hydrogenated amorphous carbon films processed by electron cyclotron resonance plasma enhanced chemical vapor deposition[J].Materials Science and Engineering:A,2000,277(1/2):57-63.
[50] SUN J,SCHMIDT M E,MURUGANATHAN M,et al.Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates[J].Nanoscale,2016,8(12):6659-6665.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[4] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[7] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[8] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[9] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[10] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[11] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[12] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[13] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[14] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[15] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持