Effect of Mo on corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials
Jie HU1,*(), Zhong-qi DONG2, Ying-ming SHEN1, Yang WANG2, Jun-ya YANG1
1 School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 2 Department of Materials Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China
The effect of Mo on phase formation, corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), electrochemical workstation and vibrating sample magnetometer (VSM). The results show that the amount of α-Fe phase and La-rich phase increases with the increase of Mo content. Mo is distributed in both NaZn13-type structure phase (1:13 phase for short) and α-Fe phase, but it does not appear in the La-rich phase. The studies on the corrosion resistance show that the corrosion potential increases and corrosion current density decreases with the increase of Mo content from x=0 to x=0.2, which indicate that the thermodynamic stability and corrosion resistance are improved. However, the corrosion resistance decreases while x increases to 0.3. The maximum magnetic entropy changes of LaFe11.5-xMoxSi1.5 under a magnetic field change of 0-3 T are about 18.51 J/(kg·K)(x=0), 16.24 J/(kg·K)(x=0.1) and 5.68 J/(kg·K)(x=0.2), respectively.
胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
Jie HU, Zhong-qi DONG, Ying-ming SHEN, Yang WANG, Jun-ya YANG. Effect of Mo on corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials. Journal of Materials Engineering, 2020, 48(8): 119-125.
HU F X , SHEN B G , SUN J R , et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Applied Physics Letters, 2001, 78 (23): 3675- 3677.
doi: 10.1063/1.1375836
2
FUJITA A , FUKAMICHI K . Large magnetocaloric effects and Landau coefficients of itinerant electron metamagnetic La(FexSi1-x)13 compounds[J]. IEEE Transactions on Magnetics, 2005, 41 (10): 3490- 3492.
doi: 10.1109/TMAG.2005.854764
3
YANG N N , YOU C Y , TIAN N , et al. Simultaneous plate forming and hydriding of La(Fe, Si)13magnetocaloric powders[J]. Journal of Magnetism and Magnetic Materials, 2018, 451, 47- 50.
doi: 10.1016/j.jmmm.2017.10.123
4
FUJIEDA S , FUKAMICHI K , SUZUKI S . Microstructure and isothermal magnetic entropy change of La(Fe0.89Si0.11)13 in a single-phase formation process by annealing[J]. Journal of Alloys and Compounds, 2013, 566, 196- 200.
doi: 10.1016/j.jallcom.2013.03.036
5
ZHANG H , SHEN B G , XU Z Y , et al. Reduction of hysteresis loss and large magnetocaloric effect in the C-and H-doped La(Fe, Si)13 compounds around room temperature[J]. Journal of Applied Physics, 2012, 111 (7): 07A909.
doi: 10.1063/1.3670608
6
JIA L , SUN J R , SHEN J , et al. Magnetocaloric effects in the La(Fe, Si)13 intermetallics doped by different elements[J]. Journal of Applied Physics, 2009, 105 (7): 07A924.
doi: 10.1063/1.3072021
7
LIU J , MOORE J D , SKOKOV K P , et al. Exploring La(Fe, Si)13-based magnetic refrigerants towards application[J]. Scripta Materialia, 2012, 67 (6): 584- 589.
doi: 10.1016/j.scriptamat.2012.05.039
8
ZHANG M , LONG Y , YE R C , et al. Corrosion behavior of magnetic refrigeration material La-Fe-Co-Si in distilled water[J]. Journal of Alloys and Compounds, 2011, 509, 3627- 3631.
doi: 10.1016/j.jallcom.2010.12.122
9
FUJIEDA S , FUKAMICHI K , SUZUKI S . Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration[J]. Journal of Alloys and Compounds, 2014, 600, 67- 70.
doi: 10.1016/j.jallcom.2014.01.229
10
曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008: 258- 267.
10
CAO C N . Principles of electrochemistry of corrosion[M]. Beijing: Chemical Industry Press, 2008: 258- 267.
11
CHEN X , CHEN Y G , TANG Y B , et al. Effects of the excess iron on phase and magnetocaloric property of LaFe11.6*xSi1.4 alloys[J]. Journal of Rare Earths, 2015, 33 (12): 1293- 1297.
doi: 10.1016/S1002-0721(14)60559-7
12
ZHANG E Y , CHEN Y G , TANG Y B . Investigation on corrosion and galvanic corrosion in LaFe11.6Si1.4 alloy[J]. Materials Chemistry and Physics, 2011, 127 (1/2): 1- 6.
13
XUE J N , LONG Y , WANG Y X , et al. Corrosion behavior and phase formation of LaFe13-xSixBy alloys[J]. Materials & Design, 2017, 129, 1- 8.
14
ZHANG M , SUN W , LONG Y , et al. Effect of chromium on magnetic properties and corrosion resistance of LaFe11.5Si1.5 compound[J]. Journal of Rare Earths, 2013, 31 (1): 69- 72.
15
HU J , GUAN L , FU S , et al. Corrosion and latent heat in thermal cycles for La(Fe, Mn, Si)13magnetocaloric compounds[J]. Journal of Magnetism and Magnetic Materials, 2014, 354, 336- 339.
doi: 10.1016/j.jmmm.2013.11.025
16
HU J , ZHANG M , LONG Y , et al. Corrosion behavior and ΔS-Tc relation of LaFe13-x-yCoxSiyCz compounds near room temperature[J]. Journal of Magnetism and Magnetic Materials, 2015, 377, 368- 372.
doi: 10.1016/j.jmmm.2014.10.133
17
TIAN N , YOU C Y , GAO B , et al. Magnetic hysteresis loss and corrosion behavior of LaFe11.5Si1.5 particles coated with Cu[J]. Journal of Applied Physics, 2013, 113 (10): 103909.
doi: 10.1063/1.4795265
18
LYUBINA J , HANNEMANN U , COHEN L F , et al. Novel La(Fe, Si)13/Cu composites for magnetic cooling[J]. Advanced Energy Materials, 2012, 2 (11): 1323- 1327.
doi: 10.1002/aenm.201200297
19
ZHANG E , CHEN Y G , TANG Y B . Effect of copper ion implantation on corrosion morphology and corrosion behavior of LaFe11.6Si1.4 alloy[J]. Journal of Rare Earths, 2012, 30 (3): 269- 273.
20
YOU C Y , WANG S P , ZHANG J , et al. Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders[J]. AIP Advances, 2016, 6 (5): 055321.
doi: 10.1063/1.4952757
JING H M , WU X Q , ZHENG Y G , et al. Effect of Mo content on the corrosion and erosion-corrosion of stainless steel in oil containing naphthenic acid[J]. Acta Metallurgica Sinica, 2002, 38 (10): 1067- 1073.
doi: 10.3321/j.issn:0412-1961.2002.10.012
ZHANG T H , WANG X Y , DENG Z W , et al. Analysis of corrosion resistance structure for Mo implanted H13 steel[J]. Journal of Beijing Normal University(Natural Science), 1996, 32 (3): 330- 333.
doi: 10.3321/j.issn:0476-0301.1996.03.001
LU C J , QU J B , YANG H , et al. Effect of element Mo on the corrosion resistance of shipbuilding steel for inner bottom plate of cargo oil tanks[J]. Corrosion & Protection, 2017, 38 (4): 273- 277.