Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (8): 119-125    DOI: 10.11868/j.issn.1001-4381.2019.000402
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响
胡洁1,*(), 董中奇2, 沈英明1, 王杨2, 杨俊雅1
1 石家庄铁道大学 材料科学与工程学院, 石家庄 050043
2 河北工业职业技术学院 材料工程系, 石家庄 050091
Effect of Mo on corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials
Jie HU1,*(), Zhong-qi DONG2, Ying-ming SHEN1, Yang WANG2, Jun-ya YANG1
1 School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Department of Materials Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China
全文: PDF(4266 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学工作站、振动样品磁强计(VSM)研究Mo元素掺杂对LaFe11.5Si1.5磁制冷材料相组成、耐腐蚀性能和磁性能的影响。结果表明:随着Mo元素的加入,α-Fe相及富La相不断增多。Mo原子分布在NaZn13型结构的相(简称1:13相)及α-Fe相中,并未出现在富La相中。对耐腐蚀性能的研究表明,当Mo含量从x=0提高至x=0.2,LaFe11.5-xMoxSi1.5合金的腐蚀电位升高,腐蚀电流密度降低,说明热力学稳定性以及耐腐蚀性均提高。但是当Mo含量增加到x=0.3时,耐腐蚀性能下降。对磁性能的研究表明,LaFe11.5-xMoxSi1.5在0~3 T磁场变化下的最大磁熵变分别为18.51 J/(kg·K)(x=0),16.24 J/(kg·K)(x=0.1)和5.68 J/(kg·K)(x=0.2)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡洁
董中奇
沈英明
王杨
杨俊雅
关键词 磁制冷材料La(Fe, Si)13耐腐蚀性能磁性能    
Abstract

The effect of Mo on phase formation, corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), electrochemical workstation and vibrating sample magnetometer (VSM). The results show that the amount of α-Fe phase and La-rich phase increases with the increase of Mo content. Mo is distributed in both NaZn13-type structure phase (1:13 phase for short) and α-Fe phase, but it does not appear in the La-rich phase. The studies on the corrosion resistance show that the corrosion potential increases and corrosion current density decreases with the increase of Mo content from x=0 to x=0.2, which indicate that the thermodynamic stability and corrosion resistance are improved. However, the corrosion resistance decreases while x increases to 0.3. The maximum magnetic entropy changes of LaFe11.5-xMoxSi1.5 under a magnetic field change of 0-3 T are about 18.51 J/(kg·K)(x=0), 16.24 J/(kg·K)(x=0.1) and 5.68 J/(kg·K)(x=0.2), respectively.

Key wordsmagnetic refrigeration material    La(Fe, Si)13    corrosion resistance    magnetic property
收稿日期: 2019-04-27      出版日期: 2020-08-15
中图分类号:  TG146.4  
基金资助:河北省高等学校科学技术研究重点项目(ZD2017066);河北省高等学校科学技术研究重点项目(ZD2018033);河北省自然科学基金项目(E2019210159)
通讯作者: 胡洁     E-mail: hujiecactus@163.com
作者简介: 胡洁(1985-), 女, 讲师, 博士, 研究方向为室温磁制冷材料, 联系地址:河北省石家庄市北二环东路17号石家庄铁道大学春晖楼B座305(050043), E-mail:hujiecactus@163.com
引用本文:   
胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
Jie HU, Zhong-qi DONG, Ying-ming SHEN, Yang WANG, Jun-ya YANG. Effect of Mo on corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials. Journal of Materials Engineering, 2020, 48(8): 119-125.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000402      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/119
Fig.1  LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2, 0.3)合金的XRD图谱
Fig.2  LaFe11.5-xMoxSi1.5合金的SEM照片
(a)x=0;(b)x=0.1;(c)x=0.2;(d)x=0.3
Fig.3  Mo元素在1:13相及α-Fe相中的含量
Fig.4  LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2, 0.3)合金在去离子水中的动电位极化曲线(a)以及平均腐蚀速率(b)
Sample Icorr/(A·cm-2) Ecorr/V
x=0 4.713×10-6 -0.766
x=0.1 3.556×10-6 -0.737
x=0.2 3.412×10-6 -0.733
x=0.3 4.742×10-6 -0.782
Table 1  LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2, 0.3)合金在去离子水中的腐蚀电流密度和自腐蚀电位
Fig.5  LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2)合金的热磁曲线
Fig.6  LaFe11.5-xMoxSi1.5合金的等温磁化曲线
(a)x=0;(b)x=0.1;(c)x=0.2
Fig.7  LaFe11.5-xMoxSi1.5合金磁熵变与温度的关系曲线
(a)x=0;(b)x=0.1;(c)x=0.2
1 HU F X , SHEN B G , SUN J R , et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Applied Physics Letters, 2001, 78 (23): 3675- 3677.
doi: 10.1063/1.1375836
2 FUJITA A , FUKAMICHI K . Large magnetocaloric effects and Landau coefficients of itinerant electron metamagnetic La(FexSi1-x)13 compounds[J]. IEEE Transactions on Magnetics, 2005, 41 (10): 3490- 3492.
doi: 10.1109/TMAG.2005.854764
3 YANG N N , YOU C Y , TIAN N , et al. Simultaneous plate forming and hydriding of La(Fe, Si)13magnetocaloric powders[J]. Journal of Magnetism and Magnetic Materials, 2018, 451, 47- 50.
doi: 10.1016/j.jmmm.2017.10.123
4 FUJIEDA S , FUKAMICHI K , SUZUKI S . Microstructure and isothermal magnetic entropy change of La(Fe0.89Si0.11)13 in a single-phase formation process by annealing[J]. Journal of Alloys and Compounds, 2013, 566, 196- 200.
doi: 10.1016/j.jallcom.2013.03.036
5 ZHANG H , SHEN B G , XU Z Y , et al. Reduction of hysteresis loss and large magnetocaloric effect in the C-and H-doped La(Fe, Si)13 compounds around room temperature[J]. Journal of Applied Physics, 2012, 111 (7): 07A909.
doi: 10.1063/1.3670608
6 JIA L , SUN J R , SHEN J , et al. Magnetocaloric effects in the La(Fe, Si)13 intermetallics doped by different elements[J]. Journal of Applied Physics, 2009, 105 (7): 07A924.
doi: 10.1063/1.3072021
7 LIU J , MOORE J D , SKOKOV K P , et al. Exploring La(Fe, Si)13-based magnetic refrigerants towards application[J]. Scripta Materialia, 2012, 67 (6): 584- 589.
doi: 10.1016/j.scriptamat.2012.05.039
8 ZHANG M , LONG Y , YE R C , et al. Corrosion behavior of magnetic refrigeration material La-Fe-Co-Si in distilled water[J]. Journal of Alloys and Compounds, 2011, 509, 3627- 3631.
doi: 10.1016/j.jallcom.2010.12.122
9 FUJIEDA S , FUKAMICHI K , SUZUKI S . Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration[J]. Journal of Alloys and Compounds, 2014, 600, 67- 70.
doi: 10.1016/j.jallcom.2014.01.229
10 曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008: 258- 267.
10 CAO C N . Principles of electrochemistry of corrosion[M]. Beijing: Chemical Industry Press, 2008: 258- 267.
11 CHEN X , CHEN Y G , TANG Y B , et al. Effects of the excess iron on phase and magnetocaloric property of LaFe11.6*xSi1.4 alloys[J]. Journal of Rare Earths, 2015, 33 (12): 1293- 1297.
doi: 10.1016/S1002-0721(14)60559-7
12 ZHANG E Y , CHEN Y G , TANG Y B . Investigation on corrosion and galvanic corrosion in LaFe11.6Si1.4 alloy[J]. Materials Chemistry and Physics, 2011, 127 (1/2): 1- 6.
13 XUE J N , LONG Y , WANG Y X , et al. Corrosion behavior and phase formation of LaFe13-xSixBy alloys[J]. Materials & Design, 2017, 129, 1- 8.
14 ZHANG M , SUN W , LONG Y , et al. Effect of chromium on magnetic properties and corrosion resistance of LaFe11.5Si1.5 compound[J]. Journal of Rare Earths, 2013, 31 (1): 69- 72.
15 HU J , GUAN L , FU S , et al. Corrosion and latent heat in thermal cycles for La(Fe, Mn, Si)13magnetocaloric compounds[J]. Journal of Magnetism and Magnetic Materials, 2014, 354, 336- 339.
doi: 10.1016/j.jmmm.2013.11.025
16 HU J , ZHANG M , LONG Y , et al. Corrosion behavior and ΔS-Tc relation of LaFe13-x-yCoxSiyCz compounds near room temperature[J]. Journal of Magnetism and Magnetic Materials, 2015, 377, 368- 372.
doi: 10.1016/j.jmmm.2014.10.133
17 TIAN N , YOU C Y , GAO B , et al. Magnetic hysteresis loss and corrosion behavior of LaFe11.5Si1.5 particles coated with Cu[J]. Journal of Applied Physics, 2013, 113 (10): 103909.
doi: 10.1063/1.4795265
18 LYUBINA J , HANNEMANN U , COHEN L F , et al. Novel La(Fe, Si)13/Cu composites for magnetic cooling[J]. Advanced Energy Materials, 2012, 2 (11): 1323- 1327.
doi: 10.1002/aenm.201200297
19 ZHANG E , CHEN Y G , TANG Y B . Effect of copper ion implantation on corrosion morphology and corrosion behavior of LaFe11.6Si1.4 alloy[J]. Journal of Rare Earths, 2012, 30 (3): 269- 273.
20 YOU C Y , WANG S P , ZHANG J , et al. Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders[J]. AIP Advances, 2016, 6 (5): 055321.
doi: 10.1063/1.4952757
21 敬和民, 吴欣强, 郑玉贵, 等. Mo含量对不锈钢在环烷酸介质中腐蚀与冲蚀的影响[J]. 金属学报, 2002, 38 (10): 1067- 1073.
doi: 10.3321/j.issn:0412-1961.2002.10.012
21 JING H M , WU X Q , ZHENG Y G , et al. Effect of Mo content on the corrosion and erosion-corrosion of stainless steel in oil containing naphthenic acid[J]. Acta Metallurgica Sinica, 2002, 38 (10): 1067- 1073.
doi: 10.3321/j.issn:0412-1961.2002.10.012
22 张通和, 王晓妍, 邓志威, 等. Mo注入H13钢抗腐蚀结构的分析[J]. 北京师范大学学报(自然科学版), 1996, 32 (3): 330- 333.
doi: 10.3321/j.issn:0476-0301.1996.03.001
22 ZHANG T H , WANG X Y , DENG Z W , et al. Analysis of corrosion resistance structure for Mo implanted H13 steel[J]. Journal of Beijing Normal University(Natural Science), 1996, 32 (3): 330- 333.
doi: 10.3321/j.issn:0476-0301.1996.03.001
23 陆春洁, 曲锦波, 杨汉, 等. Mo元素对货油舱下底板用船板钢耐腐蚀性能的影响[J]. 腐蚀与防护, 2017, 38 (4): 273- 277.
23 LU C J , QU J B , YANG H , et al. Effect of element Mo on the corrosion resistance of shipbuilding steel for inner bottom plate of cargo oil tanks[J]. Corrosion & Protection, 2017, 38 (4): 273- 277.
[1] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[2] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[3] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[4] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[5] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[6] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[7] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[8] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[9] 赵晖, 马瑞廷, 赵海涛. 合成条件对纳米锌铁氧体形貌与性能的影响[J]. 材料工程, 2018, 46(4): 38-42.
[10] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[11] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[12] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[13] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[14] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8): 123-131.
[15] 李悦, 朱立群, 李卫平, 刘慧丛, 南海洋. 钕铁硼器件表面电沉积铜层及性能[J]. 材料工程, 2017, 45(6): 55-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn