高分子复合材料在装甲防护领域的研究与应用进展
Research and application progress of polymer composites in armor protection
具有高比强度和高比吸能特点的纤维增强树脂基复合材料等非金属材料是装甲装备实现轻量化、强防护的关键材料。针对装甲装备防护构件对高性能抗弹材料的需求,本文综述了高分子复合材料在装甲防护领域的技术进展、应用现状及发展趋势,重点讨论了高性能纤维增强树脂基复合材料在复合装甲、结构装甲、多功能防护构件及聚合物透明材料在透明装甲上的应用,对比分析了我国芳纶Ⅱ、芳纶Ⅲ、PBO、PIPD等高品级有机纤维的研发及应用现状,提出依据纤维技术成熟度和制造成本不同实行系列化发展,用于近、中、远期装甲装备防护结构的基本设想,以及未来加强石墨烯抗弹材料、智能装甲材料等前沿新兴装甲防护材料及其机理研究,建立完善材料评价方法、作用机制模型和数据库。
Non-metallic materials such as fiber reinforced resin matrix composites with high specific strength and high specific energy absorption are the key material technologies to realize lightweight and strong protection of armor equipment. Aiming at the requirement of armored equipment protective components for high-performance ballistic materials, the technical progress, application status and development trend of polymer composite in the field of armor protection were summarized. The application of fiber reinforced resin matrix composites in composite armor, structural armor, multi-functional protective components and transparent polymer materials in transparent armor was discussed. Comparative analysis on the development and application status of high-grade organic fibers such as aramid Ⅱ, aramid Ⅲ, PBO, PIPD in China was carried out. A series of developments based on the maturity of fiber technology and different manufacturing costs, meeting the requirements of the near-term, mid-term, long-term armored equipment protection structure were proposed, and suggestions to strengthen the research on graphene ballistic materials, smart armor materials and other cutting-edge emerging protective materials and their mechanisms, and to establish and improve material evaluation methods, mechanism models and databases in the future were put forward.
纤维 / 复合材料 / 装甲防护 / 透明装甲 / 研究进展 {{custom_keyword}} /
fiber / composite material / armor protection / transparent armor / research progress {{custom_keyword}} /
Fiber product | Feature | Tensile strength/ (cN·dtex-1) | Tensile modulus/ GPa | Elongation at break/% | |
DuPont | Kevlar29 | Ordinary | 20.3 | 74 | 3.6 |
Kevlar49 | High modulus | 19.3 | 113 | 2.4 | |
Kevlar129 | High strength | 23.4 | 99 | 3.3 | |
Kevlar149 | Ultra high modulus | 15.9 | 143 | 1.5 | |
Teijin | Twaron standard | Ordinary | 19.5 | 70 | 3.6 |
Twaron CT | High strength | 23.0 | 90 | 3.3 | |
Twaron HM | High modulus | 19.5 | 121 | 2.1 | |
KOLON | HF200 | High strength | 20.3 | 91 | 3.2 |
HF300 | High modulus | 19.4 | 118 | 2.5 |
表 3 国外超高分子量聚乙烯纤维性能[18]Table 3 Properties of foreign ultra high molecular mass polyethylene fibers[18] |
Fiber product | Tensile strength/ (cN·dtex-1) | Tensile modulus/GPa | Elongation at break/ % | |
DSM | Dyneema SK60 | 28 | 88 | 3.5 |
Dyneema SK65 | 31 | 94 | 3.6 | |
Dyneema SK66 | 33 | 98 | 3.7 | |
Dyneema SK75 | 35 | 107 | 3.8 | |
Dyneema SK76 | 37 | 116 | 3.8 | |
Dyneema SK77 | 40 | 136 | 3.8 | |
Honeywell | Spectra 900 | 27 | 73-79 | 3.6-3.9 |
Spectra l000 | 32 | 97-113 | 2.9-3.5 | |
Spectra 2000 | 34 | 116 | 2.8-2.9 |
表 4 PC与PMMA的防弹性能比较Table 4 Comparison of bulletproof performance between PC and PMMA |
Material | Thickness/mm | Ballistic limit velocity V50/(m·s-1) | Shot in the state | Damage area diameter/ mm |
PC | 3 | 240 | The bullet place produces "bulge", without crack and fragment | <10 |
PMMA | 10 | 250 | Large area of cracks and debris spatter | >50 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
高华, 熊超, 殷军辉. 纤维增强复合材料防弹装甲抗侵彻性能研究[J]. 飞航导弹, 2018, (2): 91- 94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34 (9): 1960- 1972.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
周亮, 肖精华, 黄叶萍. 复合装甲材料研究新动向[J]. 国防技术基础, 2017, (1): 29- 33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
曹凌宇, 罗兴柏, 刘国庆, 等. 国外新型装甲防护技术综述[J]. 飞航导弹, 2018, (9): 74- 78.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
徐鲁杰, 李想, 马武伟. 纤维增强复合材料装甲防护性能影响因素分析研究[J]. 材料开发与应用, 2017, 32 (2): 47- 53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
刘建勋, 祖群, 朱建勋, 等. 新型高强度玻璃纤维制备及其增强环氧树脂性能[J]. 航空制造技术, 2010, (17): 75- 77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
陈虹, 虎龙, 艾青松, 等. 芳纶复合材料在防弹车上的应用研究[J]. 中国个体防护装备, 2017, (2): 5- 8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
李亚锋, 礼嵩明, 黑艳伟, 等. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47 (4): 39- 46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
PRIYANKA P, DIXIT A, MALI H S.High-strength hybrid textile composites with carbon, Kevlar, and E-glass fibers for impact-resistant structures.a review[J].Mechanics of Composite Materials, 2017, 53(5): 685-704.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
何烨, 肖建文, 姚烛威, 等. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47 (2): 146- 152.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |