Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 158-166    DOI: 10.11868/j.issn.1001-4381.2020.000651
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚醚P123和四乙烯五胺双功能化Fe-Zr的CO2吸附性能
杨泛明1, 黎丽君1, 肖浪1, 廖敏1, 张可意1, 谭伟石2, 贺国文1,*()
1 湖南城市学院 材料与化学工程学院, 湖南 益阳 413000
2 湖南城市学院 全固态储能材料与器件湖南省重点实验室, 湖南 益阳 413000
CO2 adsorption performance over Fe-Zr functionalized with both polyether P123 and tetraethylenepentamine
Fan-ming YANG1, Li-jun LI1, Lang XIAO1, Min LIAO1, Ke-yi ZHANG1, Wei-shi TAN2, Guo-wen HE1,*()
1 College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, Hunan, China
2 All-Solid-State Energy Storage Materials and Devices Key Laboratory of Hunan Province, Hunan City University, Yiyang 413000, Hunan, China
全文: PDF(7359 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用聚醚P123对双金属材料Fe-Zr进行改性合成介孔材料Fe-Zr(P),再利用四乙烯五胺(TETA)对Fe-Zr(P)进行功能化制得TEPA(n)/Fe-Zr(P)。采用X射线衍射、X射线光电子能谱、红外光谱、N2吸附-脱附、热重分析等技术对材料结构和热稳定性进行表征,并对CO2吸附性能进行测试。结果表明:P123存在于载体孔道内部;利用TETA对Fe-Zr(P)进行功能化,通过N与Zr配位,从而固载于Fe-Zr(P)表面;温度低于182℃时,TEPA(n)/Fe-Zr(P)保持稳定;TEPA(n)/Fe-Zr(P)中羟基和氨基同时与CO2反应,产生化学吸附,从而提高化学吸附量和N利用率;TEPA质量分数为30%,温度为75℃,气体流速为10 mL/min时,TEPA(30)/Fe-Zr(P)的吸附量可达211.3 mg/g,N利用率为62.7%。循环20次,CO2吸附量保持稳定。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨泛明
黎丽君
肖浪
廖敏
张可意
谭伟石
贺国文
关键词 Fe-ZrP123四乙烯五胺CO2吸附    
Abstract

A mesoporous material of Fe-Zr(P) was synthesized by modifying the bimetallic material of Fe-Zr with polyether P123. Then, TEPA(n)/Fe-Zr(P) was prepared by modifying Fe-Zr(P) with tetraethylenepentamine (TEPA). X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption and thermogravimetric analysis were used to analyze the structure and thermal stability of the synthesized materials. The results show that P123 is remained in the pore channels of the support. Besides, TEPA was introduced to the surface of Fe-Zr(P) through the coordination between N and Zr species. The adsorbents filled with P123 and TEPA keep stable when the temperature is less than 182℃. In addition, the adsorbents exhibit good CO2 adsorption performance in a stream of 5% CO2 concentration. Over TEPA(n)/Fe-Zr(P), both of the hydroxyl and amine groups react with CO2, leading to the occurrence of CO2 chemical adsorption and the enhancement of adsorption capacity and N utilization. When the mass fraction of TEPA is 30%, a remarkable adsorption capacity of 211.3 mg/g and the utilization of N species of 62.7% are achieved at 75℃ in a stream of 10 mL/min. After 20 cycles of adsorption-desorption, the adsorption capacity keeps stable.

Key wordsFe-Zr    P123    tetraethylenepentamine    CO2    adsorption
收稿日期: 2020-07-17      出版日期: 2021-09-17
中图分类号:  X511  
基金资助:湖南省自然科学基金项目(2019JJ50026);湖南省自然科学基金项目(2017JJ2018);湖南省教育厅科学研究项目(18B447);湖南省教育厅重点研究项目(29A085);全固态储能材料与器件湖南省重点实验室开放项目(2017TP1024)
通讯作者: 贺国文     E-mail: yfanming0102@163.com
作者简介: 贺国文(1978-), 男, 副教授, 博士, 研究方向为功能材料制备及应用, 联系地址: 湖南省益阳市湖南城市学院材料与化学工程学院313室(413000), E-mail: yfanming0102@163.com
引用本文:   
杨泛明, 黎丽君, 肖浪, 廖敏, 张可意, 谭伟石, 贺国文. 聚醚P123和四乙烯五胺双功能化Fe-Zr的CO2吸附性能[J]. 材料工程, 2021, 49(9): 158-166.
Fan-ming YANG, Li-jun LI, Lang XIAO, Min LIAO, Ke-yi ZHANG, Wei-shi TAN, Guo-wen HE. CO2 adsorption performance over Fe-Zr functionalized with both polyether P123 and tetraethylenepentamine. Journal of Materials Engineering, 2021, 49(9): 158-166.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000651      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/158
Fig.1  K4Fe(CN)6·3H2O(a),Fe-Zr(P)和TEPA(30)/Fe-Zr(P)(b)的XRD图
Fig.2  Fe-Zr(P)和TEPA(30)/Fe-Zr(P)的IR图
Fig.3  Fe-Zr(P)和TEPA(30)/Fe-Zr(P)的XPS图
(a)Fe-Zr(P)的全谱图;(b)Fe-Zr(P)中O1s的分峰图;(c)Fe-Zr(P)和TEPA(30)/Fe-Zr(P)中Zr3d对比图;(d)TEPA(30)/Fe-Zr(P)中N1s的分峰图
Fig.4  Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的TEM图和N2吸附等温线以及孔径分布曲线
(a)Fe-Zr(P)的TEM图;(b)Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的N2吸附等温线;(c)Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的孔径分布曲线
Adsorbent SBET/(m2·g-1) Vtotal/(cm3·g-1) dp/nm
Fe-Zr(P) 123 0.158 13.8
TEPA(15)/Fe-Zr(P) 33 0.085 12.6
TEPA(20)/Fe-Zr(P) 11 0.041 8.4
TEPA(25)/Fe-Zr(P) 3 0.018 8.2
TEPA(30)/Fe-Zr(P) 2 0.010 5.5
TEPA(35)/Fe-Zr(P) 2 0.008 5.4
Table 1  Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的物理性能
Fig.5  Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的热重分析曲线
Fig.6  Fe-Zr(P),TEPA(n)/Fe-Zr(P)在75 ℃的CO2吸附穿透曲线(a)和CO2-TPD图(b)
Fig.7  Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的CO2吸附性能随吸附时间和TEPA质量分数变化结果
(a)吸附-脱附量随时间变化曲线; (b)N原子利用率
Fig.8  Fe-Zr(P)和TEPA(n)/Fe-Zr(P)的吸附量随吸附温度变化
Fig.9  TEPA(n)/Fe-Zr(P)的CO2吸附性能随气体流速变化图
(a)CO2吸附穿透曲线;(b)TEPA(30)/Fe-Zr(P)的CO2吸附量
Adsorbent Temperature/℃ Gas flow rate/(mL·min-1) CO2 uptake/(mg·g-1) Reference
TEPA(30)/Fe-Zr(P) 30 10 223.7 Present study
TEPA(30)/Fe-Zr(P) 75 10 211.3 Present study
TiO2-TEPA 30 71.7 [7]
WSC-500-1 0 265.7 [12]
T-GU-700-6 25 105.6 [13]
NHC-650-1 25 196.7 [14]
LC-500-1 25 154.0 [15]
HCPs-SC-SO3NH4 25 110.0 [19]
Fe-Zr-TETA-200 75 20 180.4 [21]
PEI/Zr7-SBA-15 75 68.6 [22]
Zr-MCM-41-TETA-200 30 5 158.4 [23]
Zr-SBA(P)-50 75 5 167.2 [24]
DBU-3 25 20 150.9 [25]
Table 2  有机胺改性材料的CO2吸附性能
Fig.10  TEPA(30)/Fe-Zr(P)吸附CO2前后的红外光谱图
Fig.11  TEPA(30)/Fe-Zr(P)分别在30 ℃和75 ℃下的CO2吸附性能
1 LIAO P , CAI G , SHI J , et al. Post-modified porphyrin imine gels with improved chemical stability and efficient heterogeneous activity in CO2 transformation[J]. New Journal of Chemistry, 2019, 43, 10017- 10024.
doi: 10.1039/C9NJ00570F
2 李文秀, 葛珂宁, 张兵, 等. 用于分离CH4/CO2疏水性SiO2膜的制备[J]. 材料工程, 2013, (2): 78- 82.
doi: 10.3969/j.issn.1001-4381.2013.02.016
2 LI W X , GE K N , ZHANG B , et al. Preparation of hydrophobic silica membranes for methane and carbon dioxide separation[J]. Journal of Materials Engineering, 2013, (2): 78- 82.
doi: 10.3969/j.issn.1001-4381.2013.02.016
3 SINGH M , SENTHILKUMAR S , RAJPUT S , et al. Pore-functionalized and hydrolytically robust Cd(Ⅱ)-metal-organic framework for highly selective, multicyclic CO2 adsorption and fast-responsive luminescent[J]. Inorganic Chemistry, 2020, 59, 3012- 3025.
doi: 10.1021/acs.inorgchem.9b03368
4 GOMEZ-POZUELO G , SANA-PEREZ E S , ARENCIBIA A , et al. CO2 adsorption on amine-functionalized clays[J]. Microporous and Mesoporous Materials, 2019, 282, 38- 47.
doi: 10.1016/j.micromeso.2019.03.012
5 SANA-PEREZ E S , ARENCIBIA A , CALLEJA G , et al. Tuning the textural properties of HMS mesoporous silica functionalization towards CO2 adsorption[J]. Microporous and Mesoporous Materials, 2018, 260, 235- 244.
doi: 10.1016/j.micromeso.2017.10.038
6 JIANG G , HUANG Q , KENARSARI D K , et al. A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology[J]. Applied Energy, 2015, 147, 214- 223.
doi: 10.1016/j.apenergy.2015.01.081
7 KAPICA-KOZAR J , PIROG E , KUSIAK-NEJMAN E , et al. Titanium dioxide modified with various amines used as sorbents of carbon dioxide[J]. New Journal of Chemistry, 2017, 41, 1549- 1557.
doi: 10.1039/C6NJ02808J
8 MAFRA L , CENDAK T , SCHNEIDER S , et al. Amine functionalized porous silica for CO2/CH4 separation by adsorption: which amine and why[J]. Chemical Engineering Journal, 2018, 336, 612- 621.
doi: 10.1016/j.cej.2017.12.061
9 TAHERI F S , GHAEMI A , MALEKI A , et al. High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite[J]. Energy and Fuels, 2019, 33 (6): 5384- 5397.
doi: 10.1021/acs.energyfuels.9b00703
10 YAMADA H , CHOWDHURY F A , FUJIKI J , et al. Enhancement mechanism of the CO2 adsorption-desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (10): 9574- 9581.
11 RAO L , LIU S , WANG L , et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance[J]. Chemical Engineering Journal, 2019, 359, 428- 435.
doi: 10.1016/j.cej.2018.11.065
12 RAO L , MA R , LIU S , et al. Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance[J]. Chemical Engineering Journal, 2019, 362, 794- 801.
doi: 10.1016/j.cej.2019.01.093
13 AN L , LIU S , WANG L , et al. Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58 (8): 3349- 3358.
14 GUO L , YANG J , HU G , et al. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (5): 2806- 2813.
15 LIU S , YANG P , WANG L , et al. Nitrogen-doped porous carbons from lotus leaf for CO2 capture and supercapacitor electrodes[J]. Energy and Fuels, 2019, 33 (7): 6568- 6576.
doi: 10.1021/acs.energyfuels.9b00886
16 LIAO W M , ZHANG J H , WANG Z , et al. Semiconductive amine-functionalized Co(Ⅱ)-MOF for visible-light-driven hydrogen evolution and CO2 reduction[J]. Inorganic Chemistry, 2018, 57 (18): 11436- 11442.
doi: 10.1021/acs.inorgchem.8b01265
17 XU L , XING C Y , KE D , et al. Amino-functionalized β-cyclodextrin to construct green metal-organic framework material for CO2 capture[J]. ACS Applied Materials & Interfaces, 2020, 12, 3032- 3041.
18 JIA M , FENG Y , QIU J , et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation[J]. Separation and Purification Technology, 2019, 213, 63- 69.
doi: 10.1016/j.seppur.2018.12.029
19 ALAHMED A H , BRIGGS M E , COOPER A I , et al. Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO2 selectivity[J]. Journal of Polymer Science-Polymer Chemistry, 2018, 56 (22): 2513- 2521.
doi: 10.1002/pola.29228
20 YANG Y , CHUAH C Y , NIE L , et al. Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers[J]. Journal of Membrane Science, 2019, 569, 149- 156.
doi: 10.1016/j.memsci.2018.10.018
21 YANG F M , LIU Y , CHEN L , et al. Synthesis of amine-modified solid Fe-Zr adsorbents for CO2 adsorption[J]. Journal of Chemical Technology and Biotechnology, 2016, 91 (8): 2340- 2348.
doi: 10.1002/jctb.4827
22 KUWAHARA Y , KANG D Y , COPELAND J Y , et al. Enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. Journal of the American Chemical Society, 2012, 134 (26): 10757- 10760.
doi: 10.1021/ja303136e
23 YANG F M , CHEN L , AU C T , et al. Preparation of triethylenetetramine-modified zirconosilicate molecular sieve for carbon dioxide adsorption[J]. Environmental Progress & Sustainable Energy, 2015, 34 (6): 1814- 1821.
24 YANG F M , CHEN L , AU C T , et al. Triethylenetetramine-modified P123-occluded Zr-SBA-15 molecular sieve for CO2 adsorption[J]. Australian Journal of Chemistry, 2015, 68 (9): 1427- 1433.
doi: 10.1071/CH14680
25 GRAY M L , CHAMPAGNE K J , FAUTH D , et al. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2008, 2 (1): 3- 8.
doi: 10.1016/S1750-5836(07)00088-6
26 OLEA A , SANZ-PEREZ E S , ARENCIBIA A , et al. Amino-functionalized pore-expanded SBA-15 for CO2 adsorption[J]. Adsorption, 2013, 19 (2): 589- 600.
doi: 10.1007/s10450-013-9482-y
27 MONAZAM E R , SHADLE L J , MILLER D C , et al. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica[J]. AIChE Journal, 2013, 59 (3): 923- 935.
doi: 10.1002/aic.13870
28 ZHANG Z , MA X , WANG D , et al. Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas[J]. AIChE Journal, 2012, 58 (8): 2495- 2502.
doi: 10.1002/aic.12771
29 LIAO Y , CAO S W , YUAN Y , et al. Efficient CO2 capture and photoreduction by amine-functionalized TiO2[J]. Chemistry-A European Journal, 2014, 20 (33): 10220- 10222.
doi: 10.1002/chem.201403321
30 TSENG C L , CHEN Y K , WANG S H , et al. 2-ethanolamine on TiO2 investigated by in situ infrared spectroscopy, adsorption, photochemistry and its interaction with CO2[J]. The Journal of Physical Chemistry C, 2010, 114 (27): 11835- 11843.
doi: 10.1021/jp9117166
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[3] 王裕超, 李倩, 曾坚, 唐帅豪, 郑焕然, 许梁, 陈志彦, 雷永鹏. 超薄材料电催化CO2还原合成液体燃料[J]. 材料工程, 2022, 50(1): 56-66.
[4] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[5] 文华银, 张文焕, 刘涛, 罗世凯. 白炭黑粒子对三元乙丙橡胶硫化性能、黏弹性及泡孔结构的影响[J]. 材料工程, 2021, 49(3): 100-106.
[6] 司子彦, 谢水波, 朱奥琦, 王国华, 刘迎九, 莫官海. 蒙脱土/Fe3O4/腐殖酸复合材料对U(Ⅵ)的作用机制[J]. 材料工程, 2021, 49(3): 158-166.
[7] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[8] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[9] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[10] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[11] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[12] 赵璐婷, 张健, 李娜, 牛梅红, 平清伟. 半纤维素基磁性水凝胶的制备及其对染料吸附性能的研究[J]. 材料工程, 2020, 48(11): 85-91.
[13] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[14] 呼世磊, 刘盼, 崔燚, 倪洁, 吕东风, 魏恒勇, 卜景龙. P123对多孔TiN粉体孔结构及电化学性能的影响[J]. 材料工程, 2019, 47(9): 93-100.
[15] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn