Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 1-14    DOI: 10.11868/j.issn.1001-4381.2021.000741
  搅拌摩擦焊接专栏 本期目录 | 过刊浏览 | 高级检索 |
基于搅拌摩擦的金属固相增材制造研究进展
石磊1,2,*(), 李阳1, 肖亦辰1, 武传松1, 刘会杰2
1 山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061
2 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
Research progress of metal solid phase additive manufacturing based on friction stir
Lei SHI1,2,*(), Yang LI1, Yichen XIAO1, Chuansong WU1, Huijie LIU2
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(0 KB)   HTML ( 45 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于搅拌摩擦的固相增材制造是大型轻质合金构件成形制造的新技术, 已成为国内外先进成形制造领域研究的热点之一。本文对目前国内外基于搅拌摩擦的金属固相增材制造技术及其相关工艺机理的研究现状进行了分析和总结。常见的基于搅拌摩擦的固相增材制造技术可分为三类: 基于搅拌摩擦搭接焊原理, 使板材逐层堆积, 从而获得增材构件的搅拌摩擦增材制造(friction stir additive manufacturing, FSAM)技术; 采用中空搅拌头, 通过添加剂(粉末或丝材)进行固相搅拌摩擦沉积的增材制造(additive friction stir deposition, AFSD)技术; 采用消耗型棒材, 通过棒材的摩擦表面处理, 形成增材层的摩擦表面沉积增材制造(friction surfacing deposition additive manufacturing, FSD-AM)技术。重点分析了金属材料基于搅拌摩擦的固相增材制造技术的国内外研究与应用现状, 对比了三类基于搅拌摩擦的固相增材制造技术的特征及其工艺优缺点。最后指出增材工艺机理、形性协同控制、外场辅助工艺改型、新材料应用和人工智能优化是基于搅拌摩擦的固相增材制造技术未来研究的重点方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石磊
李阳
肖亦辰
武传松
刘会杰
关键词 增材制造固相增材制造搅拌摩擦增材制造搅拌摩擦沉积增材制造摩擦表面沉积增材制造    
Abstract

Solid phase additive manufacturing based on friction stir is a new technology for manufacturing of large lightweight alloy components, which has become one of the hot research topics in advanced manufacturing field at home and abroad.The research status of metal solid phase additive manufacturing technology based on friction stir and related process mechanism were analyzed and summarized. The solid phase additive manufacturing technology based on friction stir can be divided into three categories.One is friction stir additive manufacturing(FSAM), which is based on the principle of friction stir lap welding, the plates are stacked layer by layer. Another is additive friction stir deposition(AFSD) technology, which usually uses a hollow tool to conduct AFSD by additive powder or wire through the hollow.The third one is friction surfacing deposition additive manufacturing (FSD-AM) technology, which is based on the principle of friction surfacing by using a rotating consumable bar to deposit materials to form the designed components. The research and application status of solid phase additive manufacturing technology of metal materials based on friction stir were analyzed, and the characteristics, advantages and disadvantages of three kinds of solid phase additive manufacturing technology based on friction stir were compared.Finally, the future research direction of solid phase additive manufacturing technology based on friction stir was proposed, including revealing their process mechanism, integrated controlling of the formation and property of the AM components, modifying the process assisted with second energy, application of new materials and optimization with artificial intelligence, etc.

Key wordsadditive manufacturing    solid phase additive manufacturing    friction stir additive manufacturing    additive friction stir deposition    friction surfacing deposition additive manufacturing
收稿日期: 2021-08-05      出版日期: 2022-01-19
中图分类号:  TG44  
基金资助:国家自然科学基金项目(51905309);国家自然科学基金项目(52035005);哈尔滨工业大学先进焊接与连接国家重点实验室开放课题(AWJ-21M16)
通讯作者: 石磊     E-mail: lei.shi@sdu.edu.cn
作者简介: 石磊(1987—),男,教授,博士生导师,从事搅拌摩擦焊接与增材制造研究,联系地址:山东省济南市经十路17923号山东大学材料科学与工程学院焊接研究所(250061),E-mail: lei.shi@sdu.edu.cn
引用本文:   
石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
Lei SHI, Yang LI, Yichen XIAO, Chuansong WU, Huijie LIU. Research progress of metal solid phase additive manufacturing based on friction stir. Journal of Materials Engineering, 2022, 50(1): 1-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000741      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/1
Fig.1  典型金属增材制造技术
AM technology Feature Benefit Limitation
Solid-phase AM No-melting of the base materials and the feeding material, without flux or shielding gas, no fumes Green manufacturing technologies, eliminate the majority of fusion-based defects, lower energy consumption, broad material range, can easily fabricate multi-material and functionally graded materials, higher lateral strength as compared to fusion-based AM, high deposition rate, without flux or shielding gas, low distortion Lower dimensional accuracy, necessary of materials subtractive process, difficulty in utilizing in complex structure
Fusion-based AM Melting of the base and filling materials, with flux or shielding gas or under vacuum conditions Flexibility, suitable for small, accurate and intricate parts when using laser as heating source, lower costs for small-lot manufacturing Porosity, cracking, delamination and loss of alloying elements
Table 1  金属固相增材制造技术与熔融增材制造技术的特征比较[6]
Fig.2  搅拌摩擦焊接原理 (a)对接焊;(b)搭接焊
Fig.3  三类基于搅拌摩擦的固相增材制造工艺原理[9]
(a)搅拌摩擦增材制造技术;(b)搅拌摩擦沉积增材制造技术;(c)摩擦表面沉积增材制造技术
Technique Working principle Application material
FSAM A non-consumable tool is inserted into the stack of overlapping plates and friction stir lap welding is carried out along the defined direction with optimum process parameters. These steps are then repeated up to the desired build layer Aluminum alloys, magnesium alloys, steel, Inconel alloy, etc
AFSD A tool with inside hole is used during AFSD. Material addition in the form of metal powder or a solid rod takes place from the inside hole of a non-consumable tool. The material from the inside hole is deposited over the substrate or pre-deposited layer Aluminum alloys, magnesium alloys, metal matrix composite, etc
FSD-AM A consumable tool is utilized for depositing surface coating layers by metallurgical bonding via frictional heating. Material deposited from the consumable rod over the desired area takes place as the tool traverse Stainless steel, aluminum alloys, etc
Table 2  三类基于搅拌摩擦的固相增材制造工艺原理与典型应用材料情况[13]
Fig.4  搅拌摩擦增材制造工艺过程图[19]
Fig.5  基于搅拌摩擦的固相增材制造与熔融增材制造的对比[10, 17]
AM technology based on friction stir Feed material Friction stir tool Benefit Limitation
FSAM Plate Conventional or stationary shoulder FSW tool Broadened alloy space, no requirement of filler, engineering microstructure possible Requires special fixtures, susceptible to defects like hooking, low manufacturing efficiency and necessary of material substrate process
AFSD Wire,powder,etc Tool with inside hole Purely additive in nature, both powders and metal rods can be used as initial material, good lateral strength, high deposition rate Complex design of tool, dependence on machine variables
FSD-AM Bar Consumable bar Excellent tensile strength, no requirement of filler, high deposition rate, high layer thickness Unbonded regions at boundaries, reduced mass transfer efficiency
Table 3  三类基于搅拌摩擦的固相增材制造工艺的特征对比
Fig.6  基于搅拌摩擦的固相增材制造的典型构件及其潜在应用领域[6, 17, 25, 49]
1 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31 (1): 19- 23.
1 LU B H . Additive manufacturing—current situation and future[J]. China Mechanical Engineering, 2020, 31 (1): 19- 23.
2 郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47 (11): 32- 42.
doi: 10.11868/j.issn.1001-4381.2019.000084
2 GAO Q W , ZHAO J , SHU F Y , et al. Research progress in aluminum alloy additive manufacturing[J]. Journal of Materials Engineering, 2019, 47 (11): 32- 42.
doi: 10.11868/j.issn.1001-4381.2019.000084
3 HERZOG D , SEYDA V , WYCISK E , et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117, 371- 392.
doi: 10.1016/j.actamat.2016.07.019
4 DEBROY T , WEI H L , ZUBACK J S , et al. Additive manufacturing of metallic components—process, structure and properties[J]. Progress in Materials Science, 2018, 92, 112- 224.
5 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35 (10): 2690- 2698.
5 WANG H M . Materials'fundamental issues of laser additive ma-nufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (10): 2690- 2698.
6 YU H Z , JONES M E , BRADY G W , et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition[J]. Scripta Materialia, 2018, 153, 122- 130.
doi: 10.1016/j.scriptamat.2018.03.025
7 李文亚, 曹聪聪, 杨夏炜, 等. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47 (11): 53- 63.
doi: 10.11868/j.issn.1001-4381.2019.000262
7 LI W Y , CAO C C , YANG X W , et al. Cold spraying hybrid processing technology and its application[J]. Journal of Materials Engineering, 2019, 47 (11): 53- 63.
doi: 10.11868/j.issn.1001-4381.2019.000262
8 SRIVASTAVA A K , KUMAR N , DIXIT A R . Friction stir additive manufacturing—an innovative tool to enhance mechanical and microstructural properties[J]. Materials Science and Engineering: B, 2021, 263, 114832.
doi: 10.1016/j.mseb.2020.114832
9 GOPAN V , WINS K L D , SURENDRAN A . Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: a review[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 228- 248.
doi: 10.1016/j.cirpj.2020.12.004
10 KHODABAKHSHI F , GERLICH A P . Potentials and strategies of solid-state additive friction-stir manufacturing technology: a critical review[J]. Journal of Manufacturing Processes, 2018, 36, 77- 92.
doi: 10.1016/j.jmapro.2018.09.030
11 YU H Z , MISHRA R S . Additive friction stir deposition: a deformation processing route to metal additive manufacturing[J]. Materials Research Letters, 2021, 9 (2): 71- 83.
doi: 10.1080/21663831.2020.1847211
12 李鹏, 焦飞飞, 刘郢, 等. 金属超声波增材制造技术的发展[J]. 航空制造技术, 2016, (12): 49- 55.
12 LI P , JIAO F F , LIU Y , et al. Development of metal ultrasonic additive manufacturing technique[J]. Aeronautical Manufacturing Technology, 2016, (12): 49- 55.
13 RATHEE S , SRIVASTAVA M , MAHESHWARI S , et al. Friction based additive manufacturing technologies: principles for building in solid state, benefits, limitations, and applications[M]. Boca Raton: CRC Press, 2018.
14 PADHY G K , WU C S , GAO S . Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: a review[J]. Journal of Materials Science & Technology, 2018, 34 (1): 1- 38.
15 石磊, 戴翔, 武传松, 等. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究[J]. 材料工程, 2021, 49 (5): 122- 129.
15 SHI L , DAI X , WU C S , et al. Process investigation on ultrasonic vibration enhanced friction stir welding of 2195 aluminum-lithium alloy[J]. Journal of Materials Engineering, 2021, 49 (5): 122- 129.
16 马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54 (11): 1597- 1617.
doi: 10.11900/0412.1961.2018.00392
16 MA Z Y , SHANG Q , NI D R , et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54 (11): 1597- 1617.
doi: 10.11900/0412.1961.2018.00392
17 PALANIVEL S , NELATURU P , GLASS B , et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design, 2015, 65, 934- 952.
18 PALANIVEL S , SIDHAR H , MISHRA R S . Friction stir additive manufacturing: route to high structural performance[J]. JOM, 2015, 67 (3): 616- 621.
doi: 10.1007/s11837-014-1271-x
19 傅徐荣, 邢丽, 黄春平, 等. 静轴肩搅拌摩擦增材制造2024铝合金的组织特征[J]. 中国有色金属学报, 2019, 29 (8): 1591- 1598.
19 FU X R , XING L , HUANG C P , et al. Microstructure of 2024 aluminum alloy by stationary shoulder friction stir additive ma-nufacturing[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (8): 1591- 1598.
20 PHILLIPS B J , MASON C J T , BECK S C , et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 295, 117169.
doi: 10.1016/j.jmatprotec.2021.117169
21 HARTLEY W D , GARCIA D , YODER J K , et al. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 291, 117045.
doi: 10.1016/j.jmatprotec.2021.117045
22 CALVERT J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 2015.
23 DILIP J J S , BABU S , RAJAN S V , et al. Use of friction surfacing for additive manufacturing[J]. Materials and Manufacturing Processes, 2013, 28 (2): 189- 194.
doi: 10.1080/10426914.2012.677912
24 SHEN J , HANKE S , ROOS A , et al. Fundamental study on additive manufacturing of aluminum alloys by friction surfacing layer deposition[J]. AIP Conference Proceedings, 2019, 2113 (1): 150015.
25 DILIP J J S , RAM G D J . Microstructure evolution in aluminum alloy AA2014 during multi-layer friction deposition[J]. Materials Characterization, 2013, 86, 146- 151.
doi: 10.1016/j.matchar.2013.10.009
26 WHITE D. Object consolidation employing friction joining: US6457629B1[P]. 2002-10-01.
27 ZHAO Z J , YANG X Q , LI S G , et al. Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy[J]. Journal of Manufacturing Processes, 2019, 38, 396- 410.
doi: 10.1016/j.jmapro.2019.01.042
28 孙金睿, 朱海, 赵华夏, 等. 铝合金搅拌摩擦增材制造工艺参数对成型效果的影响[J]. 热加工工艺, 2018, 47 (15): 37- 42.
28 SUN J R , ZHU H , ZHAO H X , et al. Influence of process parameters of friction stir additive manufacturing of aluminum alloy on forming effect[J]. Hot Working Technology, 2018, 47 (15): 37- 42.
29 王忻凯, 邢丽, 徐卫平, 等. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43 (5): 8- 12.
29 WANG X K , XING L , XU W P , et al. Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (5): 8- 12.
30 王忻凯. 铝合金搅拌摩擦增材制造工艺研究[D]. 南昌: 南昌航空大学, 2015.
30 WANG X K. Research on manufacturing technology of aluminum alloy friction stir additive[D]. Nanchang: Nanchang Hangkong University, 2015.
31 邹胜科. 高强铝合金搅拌摩擦增材制造成形机理和工艺研究[D]. 北京: 北京理工大学, 2016.
31 ZOU S K. Research on forming mechanism and technology of friction stir additive manufacturing of high strength aluminum alloy[D]. Beijing: Beijing Institute of Technology, 2016.
32 MAO Y Q , KE L M , HUANG C M , et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83 (9/12): 1637- 1647.
33 赵梓钧. 铝锂合金搅拌摩擦增材组织性能及流动特征研究[D]. 天津: 天津大学, 2018.
33 ZHAO Z J. Research on microstructure, properties and flow characteristics of friction stir additives for Al-Li alloy[D]. Tianjin: Tianjin University, 2018.
34 赵梓钧, 杨新岐, 李胜利, 等. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47 (9): 84- 92.
34 ZHAO Z J , YANG X Q , LI S L , et al. Influence of tool shape and process on formation and defects of friction stir additive manufactured build[J]. Journal of Materials Engineering, 2019, 47 (9): 84- 92.
35 HE C , LI Y , ZHANG Z , et al. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al-Zn-Mg alloy[J]. Materials Science and Engineering: A, 2020, 777, 139035.
36 LI Y , HE C , WEI J , et al. Correlation of local microstructures and mechanical properties of Al-Mg-Cu alloy build fabricated via underwater friction stir additive manufacturing[J]. Materials Science and Engineering: A, 2021, 805, 140590.
37 黄斌. 基于静轴肩搅拌摩擦焊的增材制造技术研究[D]. 南昌: 南昌航空大学, 2016.
37 HUANG B. Research on additive manufacturing technology based on friction stir welding of static shaft shoulder[D]. Nanchang: Nanchang Hangkong University, 2016.
38 DERAZKOLA H A , KHODABAKHSHI F , SIMCHI A . Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology[J]. Polymer Testing, 2020, 90, 106690.
39 SHARMA A , BANDARI V , ITO K , et al. A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing[J]. Journal of Manufacturing Processes, 2017, 26, 122- 130.
40 ARDALANNIYA A , NOUROUZI S , AVALHJ , et al. Fabrication of the laminated Al-Zn-Cup/Al-Zn composite using friction stir additive manufacturing[J]. Materials Today Communications, 2021, 27, 102268.
41 SRIVASTAVA M , RATHEE S . Microstructural and microhardness study on fabrication of Al 5059/SiC composite component via a novel route of friction stir additive manufacturing[J]. Materials Today: Proceedings, 2020, 39, 1775- 1780.
42 ROODGARI M R , JAMAATI R , AVAL H J . Fabrication of a 2-layer laminated steel composite by friction stir additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 51, 110- 121.
43 HO Y H , JOSHI S S , WU T C , et al. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites[J]. Materials Science & Engineering: C, 2020, 109, 110632.
44 ZHANG Z , TAN Z J , LI J Y , et al. Integrated modeling of process-microstructure-property relations in friction stir additive manufacturing[J]. Acta Metallurgica Sinica, 2020, 33 (1): 75- 87.
45 ZHANG Z , TAN Z J , LI J Y , et al. Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104 (1/4): 767- 784.
46 李如琦, 吴奇, 龙连春. 搅拌摩擦增材成型过程仿真与显微性能预测[J]. 中国有色金属学报, 2020, 30 (8): 1846- 1854.
46 LI R Q , WU Q , LONG L C . Simulation of friction stir additive process and its micro-properties prediction[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (8): 1846- 1854.
47 张昭, 谭治军. Ti-6Al-4V在搅拌摩擦增材中晶粒生长的数值模拟[J]. 世界有色金属, 2018, (6): 15- 18.
47 ZHANG Z , TAN Z J . Numerical simulation of grain growth in friction stir additive manufacturing of Ti-6Al-4V alloy[J]. World Nonferrous Metals, 2018, (6): 15- 18.
48 张昭, 谭治军, 李健宇, 等. 搅拌摩擦增材制造的微观结构-力学性能一体化数值模拟[J]. 航空制造技术, 2019, 62 (增刊1): 14- 18.
48 ZHANG Z , TAN Z J , LI J Y , et al. Integrated modelling of microstructure and mechanical property in friction stir additive manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62 (Suppl 1): 14- 18.
49 PRIYANSHI A , SANKAR H R , SUREKHA Y , et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Ma-nufacturing, 2021, 47, 102259.
50 RIVERA O G , ALLISON P G , BREWER L N , et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition[J]. Materials Science and Engineering: A, 2018, 724, 547- 558.
51 PHILLIPS B J , AVERY D Z , LIU T , et al. Microstructure-deformation relationship of additive friction stir-deposition Al-Mg-Si[J]. Materialia, 2019, 7, 100387.
52 PERRY M E J , GRIFFITHS R J , GARCIA D , et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition[J]. Additive Manufacturing, 2020, 35, 101293.
53 GRIFFITHS R J , GARCIA D , SONG J , et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process-microstructure linkages[J]. Materialia, 2021, 15, 100967.
54 PRIEDEMAN J L , PHILLIPS B J , LOPEZ J J , et al. Microstructure development in additive friction stir-deposited Cu[J]. Metals, 2020, 10 (11): 1538.
55 RIVERA O G , ALLISON P G , JORDON J B , et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering: A, 2017, 694, 1- 9.
56 AVERY D Z , RIVERA O G , MASON C J T , et al. Fatigue behavior of solid-state additive manufactured Inconel 625[J]. JOM, 2018, 70 (11): 2475- 2484.
57 RUTHERFORD B A , AVERY D Z , PHILLIPS B J , et al. Effect of thermomechanical processing on fatigue behavior in solid-state additive manufacturing of Al-Mg-Si alloy[J]. Metals, 2020, 10 (7): 947.
58 ANDERSON-WEDGE K , AVERY D Z , DANIEWICZ S R , et al. Characterization of the fatigue behavior of additive friction stir-deposition AA2219[J]. International Journal of Fatigue, 2021, 142, 105951.
59 YANG H G . Numerical simulation of the temperature and stress state on the additive friction stir with the smoothed particle hydrodynamics method[J]. Strength of Materials, 2020, 52 (1): 24- 31.
60 STUBBLEFIELD G G , FRASER K , PHILLIPS B J , et al. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D)[J]. Materials & Design, 2021, 202, 109514.
61 Van der STELT A A , BOR T C , GEIJSELAERS H J M , et al. Cladding of advanced Al alloys employing friction stir welding[J]. Key Engineering Materials, 2013, 554/557, 1014- 1021.
62 LIU S , BOR T C , Van der STELT A A , et al. Friction surface cladding: an exploratory study of a new solid state cladding process[J]. Journal of Materials Processing Technology, 2016, 229, 769- 784.
63 GRIFFITHS R J , PETERSEN D T , GARCIA D , et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy[J]. Applied Sciences, 2019, 9 (17): 3486.
64 MUKHOPADHYAY A , SAHA P . Mechanical and microstructural characterization of aluminium powder deposit made by friction stir based additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 281, 116648.
65 LI B , SHEN Y , LEI L , et al. Fabrication and evaluation of Ti3Alp/Ti-6Al-4V surface layer via additive friction-stir processing[J]. Materials and Manufacturing Processes, 2014, 29 (4): 412- 417.
66 BLINDHEIM J , WELO T , STEINERT M . First demonstration of a new additive manufacturing process based on metal extrusion and solid-state bonding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105 (5/6): 2523- 2530.
67 BLINDHEIM J , WELO T , STEINERT M . Investigating the mechanics of hybrid metal extrusion and bonding additive manufacturing by FEA[J]. Metals, 2019, 9 (8): 811.
68 BLINDHEIM J , GRONG Ø , WELO T , et al. On the mechanical integrity of AA6082 3D structures deposited by hybrid metal extrusion & bonding additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 282, 116684.
69 GANDRA J , KROHN H , MIRANDA R M , et al. Friction surfacing—a review[J]. Journal of Materials Processing Technology, 2014, 214 (5): 1062- 1093.
70 CHANDRASEKARAN M , BATCHELOR A W , JANA S . Friction surfacing of metal coatings on steel and aluminum substrate[J]. Journal of Materials Processing Technology, 1997, 72 (3): 446- 452.
71 DILIP J J S , RAFI H K , RAM G D J . A new additive manufacturing process based on friction deposition[J]. Transactions of the Indian Institute of Metals, 2011, 64 (1): 27- 30.
72 ELFISHAWY E, AHMED M, SELEMAN M E. Additive manufacturing of aluminum using friction stir deposition[C]//TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. Berlin: Springer International Publishing, 2020.
73 KALLIEN Z , RATH L , ROOS A , et al. Experimentally established correlation of friction surfacing process temperature and deposit geometry[J]. Surface and Coatings Technology, 2020, 397, 126040.
74 LIU X , YAO J , WANG X , et al. Finite difference modeling on the temperature field of consumable-rod in friction surfacing[J]. Journal of Materials Processing Technology, 2009, 209 (3): 1392- 1399.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[3] 耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
[4] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[5] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[6] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[7] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[8] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[9] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[10] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[11] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[12] 陈勇, 陈辉, 姜亦帅, 汪倩, 吴影, 熊俊, 董世运. 高性能金属材料激光增材制造应力变形调控研究现状[J]. 材料工程, 2019, 47(11): 1-10.
[13] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[14] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[15] 纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn