Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (11): 101-108    DOI: 10.11868/j.issn.1001-4381.2021.001006
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
退火处理对含铒Al-Mg-Zn合金组织和性能的影响
高杰明1, 黄晖1, 石薇2, 魏午1,*(), 文胜平1, 韩颖3, 聂祚仁1
1 北京工业大学 新型功能材料教育部重点实验室, 北京 100124
2 广东腐蚀科学与技术创新研究院, 广州 510530
3 东北轻合金有限责任公司, 哈尔滨 150000
Effect of annealing treatment on microstructure and property of Er-containing Al-Mg-Zn alloys
Jieming GAO1, Hui HUANG1, Wei SHI2, Wu WEI1,*(), Shengping WEN1, Ying HAN3, Zuoren NIE1
1 Key Laboratory of Advanced Functional Materials(Ministry of Eduction), Beijing University of Technology, Beijing 100124, China
2 Institute of Corrosion Science and Technology, Guangzhou 510530, China
3 Northeast Light Alloy Co., Ltd., Harbin 150000, China
全文: PDF(22118 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

使用硬度测量、室温拉伸、光学显微镜(OM)、电子背散射衍射(EBSD)、透射电镜(TEM)等测试方法,对不同退火处理的Al-6.0Mg-1.0Zn-0.8Mn-0.2Cu-0.2Er-0.1Zr热轧板的室温拉伸性能、晶间腐蚀性能和合金的宏微观组织进行了系统研究。结果表明:合金板材的稳定化工艺窗口为230℃/18 h,240℃/6 h,250~270℃/2 h;在250℃/2 h退火后,合金板材的屈服强度为263 MPa,失重值为6.732 mg/cm2。结合力学性能和腐蚀性能,优选250℃/2 h为热轧板的最佳稳定化工艺。通过选区电子衍射和能谱图分析,发现晶界与晶内的析出相均为T-Mg32(AlZn)49相。经过250℃/2 h退火后,晶内T相逐渐长大回溶,形貌由方块状转变为短棒状。而T相在晶界处呈断续分布,且间距变大,所以呈现良好的耐蚀性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高杰明
黄晖
石薇
魏午
文胜平
韩颖
聂祚仁
关键词 含铒Al-Mg-Zn合金稳定化晶间腐蚀T相力学性能    
Abstract

Effect of annealing treatment on tensile properties, intergranular corrosion, macrostructure and microstructure of Al-6.0Mg-1.0Zn-0.8Mn-0.2Cu-0.2Er-0.1Zr hot-rolled plate as studied by hardness testing, tensile testing, intergranular corrosion, OM, EBSD and TEM. The results show that the stabilization work window of the plate is 230℃/18 h, 240℃/6 h and 250-270℃/2 h. After 250℃/2 h, the alloy plate presents the best comprehensive performance with 263 MPa yield strength and 6.732 mg/cm2 mass loss. 250℃/2 h is selected as the optimal stabilization process for hot rolled plate by combining the mechanical properties and corrosion resistance. Through selected area electron diffraction (SEAD) and energy spectrum analysis, the second phase at the grain boundary and in the grain are all the T-Mg32(AlZn)49 phases. After annealing at 250℃/2 h, the T phase in grains gradually grows up and re-dissolves, and the morphology changes from square to short rod. The T phase are discontinuous and the spacing becomes larger at grain boundary, which shows good corrosion resistance.

Key wordsEr containing Al-Mg-Zn alloy    stabilization    intergranular corrosion    T phase    mechanical property
收稿日期: 2021-10-18      出版日期: 2022-11-17
中图分类号:  TG146.21  
  TG146.453  
基金资助:北京市教委科研计划科技一般项目(KM202110005010)
通讯作者: 魏午     E-mail: weiwu@bjut.edu.cn
作者简介: 魏午(1990—), 男, 讲师, 博士, 研究方向为复合微合金化铝合金, 联系地址: 北京市朝阳区平乐园100号北京工业大学新型功能材料教育部重点实验室(100124), E-mail: weiwu@bjut.edu.cn
引用本文:   
高杰明, 黄晖, 石薇, 魏午, 文胜平, 韩颖, 聂祚仁. 退火处理对含铒Al-Mg-Zn合金组织和性能的影响[J]. 材料工程, 2022, 50(11): 101-108.
Jieming GAO, Hui HUANG, Wei SHI, Wu WEI, Shengping WEN, Ying HAN, Zuoren NIE. Effect of annealing treatment on microstructure and property of Er-containing Al-Mg-Zn alloys. Journal of Materials Engineering, 2022, 50(11): 101-108.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.001006      或      http://jme.biam.ac.cn/CN/Y2022/V50/I11/101
Mg Zn Mn Cu Er Zr Al
5.70 0.93 0.84 0.07 0.15 0.05 Bal
Table 1  实验合金化学成分(质量分数/%)
Fig.1  Al-Mg-Zn合金热轧板显微硬度随退火温度变化曲线
Fig.2  Al-Mg-Zn合金热轧板退火1 h偏光金相显微图
(a)225 ℃; (b)250 ℃; (c)275 ℃; (d)300 ℃; (e)325 ℃; (f)350 ℃; (g)375 ℃; (h)400 ℃
Fig.3  Al-Mg-Zn合金热轧板在220~270 ℃退火1~72 h硝酸失重值随退火时间变化曲线
Fig.4  Al-Mg-Zn合金在不同退火态敏化后的金相照片
(a)220 ℃/48 h; (b)230 ℃/12 h; (c)240 ℃/48 h
Fig.5  Al-Mg-Zn合金热轧板IGC变化曲线
Alloy state σm/MPa σ0.2/MPa A/% Mass loss after sensitization/(mg·cm-2)
Hot-rolled state 441 297 16.5 49.52±0.18
230 ℃/18 h 420 254 16.3 13.32±0.85
240 ℃/6 h 421 258 14.5 12.30±0.28
250 ℃/2 h 432 263 16.0 6.73±0.53
270 ℃/2 h 406 252 14.0 5.69±0.03
Table 2  Al-Mg-Zn合金热轧态和退火态拉伸性能和腐蚀性能
Fig.6  Al-Mg-Zn合金在不同状态下的XRD谱图
Fig.7  Al-Mg-Zn合金热轧板敏化前的TEM照片
(a)变形回复组织;(b)晶界
Fig.8  Al-Mg-Zn合金热轧板敏化后的TEM照片
(a)变形回复组织;(b)晶内T相;(c)图(b)对应的选区电子衍射;(d)晶界T相
Fig.9  Al-Mg-Zn合金在250 ℃/2 h退火敏化后的TEM照片
(a)变形回复组织;(b)晶界T相;(c)沿AlMn相界析出T相;(d)球形Al3(Er, Zr)相
Fig.10  Al-Mg-Zn合金在250 ℃/2 h退火敏化后的暗场TEM组织及EDS分析
(a)暗场相;(b)Mg;(c)Zn;(d)Mn
Alloy state NAMLT value/(mg·cm-2) Precipitate at grain boundary Precipitate in grain
Morphology Size/nm Space/nm Morphology Size/nm
Length Width Length Width
Hot-rolled+sensitization 49.518 Continuous film 200-250 13-20 30-40 Square 10-12 9-11
250 ℃/2 h+ sensitization 6.732 Short rod 160-200 40-60 300-400 Short rod 140-160 40-60
Table 3  Al-Mg-Zn合金热轧态敏化后和250 ℃/2 h敏化退火态晶界、晶内析出相(尺寸、形貌、间距)统计
1 TANG Z Q , JIANG F , LONG M J , et al. Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy[J]. Applied Surface Science, 2020, 514, 1- 12.
2 XU G F , QIAN J , XIAO D , et al. Mechanical properties and microstructure of TIG and FSW joints of a new Al-Mg-Mn-Sc-Zr alloy[J]. Journal of Materials Engineering and Performance, 2016, 25 (4): 1249- 1256.
doi: 10.1007/s11665-016-1942-6
3 ZHANG R , KNIGHT S P , HOLTZ R L , et al. A Survey of sensitization in 5×××series aluminum alloys[J]. Corrosion, 2016, 72 (2): 144- 159.
doi: 10.5006/1787
4 KATSAS S , NIKOLAOU J , PAPADIMITRIOU G . Corrosion resistance of repair welded naval aluminium alloys[J]. Materials & Design, 2007, 28 (3): 831- 836.
5 KRAMER L , PHILLIPPI M , TACKW T , et al. Locally reversing sensitization in 5×××aluminum plate[J]. Journal of Materials Engineering and Performance, 2012, 21 (6): 1025- 1029.
doi: 10.1007/s11665-011-9998-9
6 MENG C Y , ZHANG D , ZHUANG L Z , et al. Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al-Mg-Zn alloys[J]. Journal of Alloys and Compouds, 2016, 655, 178- 187.
doi: 10.1016/j.jallcom.2015.09.159
7 LIN S P , NIE Z R , HUANG H , et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Materials & Design, 2010, 31 (3): 1607- 1612.
8 吴浩, 郑志凯, 任思蒙, 等. 微量Er和Zr对Al-Mg合金再结晶行为和焊接性能的影响[J]. 中国有色金属学报, 2021, 31 (2): 289- 297.
8 WU H , ZHENG Z K , REN S M , et al. Effects of Er and Zr micro-additions on recrystallization behavior and welding properties of Al-Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (2): 289- 297.
9 DING Y S , GAO K Y , GUO S S , et al. The recrystallization behavior of Al-6Mg-0.4Mn-0.15Zr-xSc (x=0.04-0.10 wt%) alloys[J]. Materials Characterization, 2019, 147, 262- 270.
doi: 10.1016/j.matchar.2018.11.009
10 WEN S P , WANG W , ZHAO W H , et al. Precipitation hardening and recrystallization behavior of Al-Mg-Er-Zr alloys[J]. Journal of Alloys and Compounds, 2016, 687, 143- 151.
doi: 10.1016/j.jallcom.2016.06.045
11 MENG C Y , ZHANG D , LIU P P , et al. Microstructure characterization in a sensitized Al-Mg-Mn-Zn alloy[J]. Rare Metals, 2018, 37 (2): 129- 135.
doi: 10.1007/s12598-015-0665-4
12 MENG C Y , ZHANG D , CUI H , et al. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al-Mg alloys[J]. Journal of Alloys and Compounds, 2014, 617, 925- 932.
doi: 10.1016/j.jallcom.2014.08.099
13 杨磊, 罗兵辉, 占戈, 等. 添加Zn对5083铝合金组织和腐蚀性能的影响[J]. 中南大学学报(自然科学版), 2012, 43 (12): 4666- 4670.
13 YANG L , LUO B H , ZHAN G , et al. Effect of addition of Zn on microstructure and corrosion property of 5083Al alloy[J]. Journal of Central South University (Science and Technology), 2012, 43 (12): 4666- 4670.
14 CAO C , ZHANG D , WANG X , et al. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt.%) alloy[J]. Materials Characterization, 2016, 122, 177- 182.
doi: 10.1016/j.matchar.2016.11.004
15 HOU S L , ZHANG D , DING Q W , et al. Solute clustering and precipitation of Al-5.1Mg-0.15Cu-xZn alloy[J]. Materials Science and Engineering: A, 2019, 759, 465- 478.
doi: 10.1016/j.msea.2019.05.066
16 PAN Y L , ZHANG D , LIU H R , et al. Precipitation hardening and intergranular corrosion behavior of novel Al-Mg-Zn(-Cu) alloys[J]. Journal of Alloys and Compounds, 2021, 853, 157199.
doi: 10.1016/j.jallcom.2020.157199
17 HOU S L , LIU P , ZHANG D , et al. Precipitation hardening behavior and microstructure evolution of Al-5.1Mg-0.15Cu alloy with 3.0Zn (wt%) addition[J]. Journal of Materials Science, 2018, 53, 3846- 3861.
doi: 10.1007/s10853-017-1811-1
18 PICU R C , ZHANG D . Atomistic study of pipe diffusion in Al-Mg alloys[J]. Acta Materialia, 2004, 52 (1): 161- 171.
doi: 10.1016/j.actamat.2003.09.002
19 SCOTTO D'ANTUONO D , GAIES J , GOLUMBFSKIE W , et al. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5×××series aluminum alloys[J]. Acta Materialia, 2017, 123, 264- 271.
doi: 10.1016/j.actamat.2016.10.060
20 ZHAO J W , LUO B H , HE K J , et al. Effects of minor Zn content on microstructure and corrosion properties of Al-Mg alloy[J]. Journal of Central South University, 2016, 23 (12): 3051- 3059.
doi: 10.1007/s11771-016-3368-6
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn