1 Key Laboratory of Advanced Functional Materials(Ministry of Eduction), Beijing University of Technology, Beijing 100124, China 2 Institute of Corrosion Science and Technology, Guangzhou 510530, China 3 Northeast Light Alloy Co., Ltd., Harbin 150000, China
Effect of annealing treatment on tensile properties, intergranular corrosion, macrostructure and microstructure of Al-6.0Mg-1.0Zn-0.8Mn-0.2Cu-0.2Er-0.1Zr hot-rolled plate as studied by hardness testing, tensile testing, intergranular corrosion, OM, EBSD and TEM. The results show that the stabilization work window of the plate is 230℃/18 h, 240℃/6 h and 250-270℃/2 h. After 250℃/2 h, the alloy plate presents the best comprehensive performance with 263 MPa yield strength and 6.732 mg/cm2 mass loss. 250℃/2 h is selected as the optimal stabilization process for hot rolled plate by combining the mechanical properties and corrosion resistance. Through selected area electron diffraction (SEAD) and energy spectrum analysis, the second phase at the grain boundary and in the grain are all the T-Mg32(AlZn)49 phases. After annealing at 250℃/2 h, the T phase in grains gradually grows up and re-dissolves, and the morphology changes from square to short rod. The T phase are discontinuous and the spacing becomes larger at grain boundary, which shows good corrosion resistance.
TANG Z Q , JIANG F , LONG M J , et al. Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy[J]. Applied Surface Science, 2020, 514, 1- 12.
2
XU G F , QIAN J , XIAO D , et al. Mechanical properties and microstructure of TIG and FSW joints of a new Al-Mg-Mn-Sc-Zr alloy[J]. Journal of Materials Engineering and Performance, 2016, 25 (4): 1249- 1256.
doi: 10.1007/s11665-016-1942-6
3
ZHANG R , KNIGHT S P , HOLTZ R L , et al. A Survey of sensitization in 5×××series aluminum alloys[J]. Corrosion, 2016, 72 (2): 144- 159.
doi: 10.5006/1787
4
KATSAS S , NIKOLAOU J , PAPADIMITRIOU G . Corrosion resistance of repair welded naval aluminium alloys[J]. Materials & Design, 2007, 28 (3): 831- 836.
5
KRAMER L , PHILLIPPI M , TACKW T , et al. Locally reversing sensitization in 5×××aluminum plate[J]. Journal of Materials Engineering and Performance, 2012, 21 (6): 1025- 1029.
doi: 10.1007/s11665-011-9998-9
6
MENG C Y , ZHANG D , ZHUANG L Z , et al. Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al-Mg-Zn alloys[J]. Journal of Alloys and Compouds, 2016, 655, 178- 187.
doi: 10.1016/j.jallcom.2015.09.159
7
LIN S P , NIE Z R , HUANG H , et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Materials & Design, 2010, 31 (3): 1607- 1612.
WU H , ZHENG Z K , REN S M , et al. Effects of Er and Zr micro-additions on recrystallization behavior and welding properties of Al-Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (2): 289- 297.
9
DING Y S , GAO K Y , GUO S S , et al. The recrystallization behavior of Al-6Mg-0.4Mn-0.15Zr-xSc (x=0.04-0.10 wt%) alloys[J]. Materials Characterization, 2019, 147, 262- 270.
doi: 10.1016/j.matchar.2018.11.009
10
WEN S P , WANG W , ZHAO W H , et al. Precipitation hardening and recrystallization behavior of Al-Mg-Er-Zr alloys[J]. Journal of Alloys and Compounds, 2016, 687, 143- 151.
doi: 10.1016/j.jallcom.2016.06.045
11
MENG C Y , ZHANG D , LIU P P , et al. Microstructure characterization in a sensitized Al-Mg-Mn-Zn alloy[J]. Rare Metals, 2018, 37 (2): 129- 135.
doi: 10.1007/s12598-015-0665-4
12
MENG C Y , ZHANG D , CUI H , et al. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al-Mg alloys[J]. Journal of Alloys and Compounds, 2014, 617, 925- 932.
doi: 10.1016/j.jallcom.2014.08.099
YANG L , LUO B H , ZHAN G , et al. Effect of addition of Zn on microstructure and corrosion property of 5083Al alloy[J]. Journal of Central South University (Science and Technology), 2012, 43 (12): 4666- 4670.
14
CAO C , ZHANG D , WANG X , et al. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt.%) alloy[J]. Materials Characterization, 2016, 122, 177- 182.
doi: 10.1016/j.matchar.2016.11.004
15
HOU S L , ZHANG D , DING Q W , et al. Solute clustering and precipitation of Al-5.1Mg-0.15Cu-xZn alloy[J]. Materials Science and Engineering: A, 2019, 759, 465- 478.
doi: 10.1016/j.msea.2019.05.066
16
PAN Y L , ZHANG D , LIU H R , et al. Precipitation hardening and intergranular corrosion behavior of novel Al-Mg-Zn(-Cu) alloys[J]. Journal of Alloys and Compounds, 2021, 853, 157199.
doi: 10.1016/j.jallcom.2020.157199
17
HOU S L , LIU P , ZHANG D , et al. Precipitation hardening behavior and microstructure evolution of Al-5.1Mg-0.15Cu alloy with 3.0Zn (wt%) addition[J]. Journal of Materials Science, 2018, 53, 3846- 3861.
doi: 10.1007/s10853-017-1811-1
18
PICU R C , ZHANG D . Atomistic study of pipe diffusion in Al-Mg alloys[J]. Acta Materialia, 2004, 52 (1): 161- 171.
doi: 10.1016/j.actamat.2003.09.002
19
SCOTTO D'ANTUONO D , GAIES J , GOLUMBFSKIE W , et al. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5×××series aluminum alloys[J]. Acta Materialia, 2017, 123, 264- 271.
doi: 10.1016/j.actamat.2016.10.060
20
ZHAO J W , LUO B H , HE K J , et al. Effects of minor Zn content on microstructure and corrosion properties of Al-Mg alloy[J]. Journal of Central South University, 2016, 23 (12): 3051- 3059.
doi: 10.1007/s11771-016-3368-6