Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 153-163    DOI: 10.11868/j.issn.1001-4381.2021.000051
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响
陈高红1,2,3, 张月1, 李应权1, 刘建华1, 于美1,*()
1 北京航空航天大学 材料科学与工程学院, 北京 100191
2 中国航发北京航空材料研究院, 北京 100095
3 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
Effect of container loading method of corrosion inhibitor combination on corrosion resistance of aluminum alloy coating
Gaohong CHEN1,2,3, Yue ZHANG1, Yingquan LI1, Jianhua LIU1, Mei YU1,*()
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
3 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
全文: PDF(15105 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用减压吸附和层层自组装技术在介孔二氧化硅纳米颗粒(mesoporous silica nanoparticles,MSN)上同时负载8-羟基喹啉(8-hydroxyquinoline,8-HQ)和苯并三氮唑(1H-benzotriazole,BTA),制备缓蚀剂复合纳米容器(MSN-QB),并将其添加至环氧涂层中从而获得新的涂层(MQB)。利用扫描电镜、透射电镜、傅里叶红外光谱、Zeta电位测试、热重分析等研究缓蚀剂负载前后纳米容器结构的变化和缓蚀剂的刺激响应释放行为,并通过电化学测试和盐雾实验研究层层自组装方式对涂层防护性能的提升。结果表明:MSN-QB中8-HQ和BTA的负载量分别为6.8%(质量分数,下同)和7.1%。MSN-QB具有pH响应特性,8-HQ和BTA在中性条件下释放均受到抑制,在碱性(pH=10)和酸性(pH=4)条件下均可释放,碱性条件下的释放速率更高。MQB涂层具有最佳的耐蚀性能,在3.5% NaCl溶液中浸泡20天后,MQB涂层的低频阻抗值(2.0×109 Ω·cm2)最大,是缓蚀剂单独负载并添加到涂层中的两倍以上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈高红
张月
李应权
刘建华
于美
关键词 缓蚀剂组合负载方式层层自组装铝合金耐蚀性    
Abstract

The composite nanocontainer of corrosion inhibitor (MSN-QB) was prepared by loading octahydroxyquinoline (8-HQ) and benzotriazole (BTA) on mesoporous silica nanoparticles(MSN) simultaneously using vacuum adsorption and layer-by-layer self-assembly technology, and added to the epoxy coating to obtain a new coating (MQB). SEM, TEM, FT-IR, Zeta-potential and TGA were used to study the structure changes of the nanocontainer before and after loading corrosion inhibitors and the stimulus response release behavior of the corrosion inhibitors, and electrochemical test and salt spray test were used to study the improvement of coating protection performance by layer-by-layer self-assembly technique. The results show that the loadings of 8-HQ and BTA in MSN-QB are 6.8%(mass fraction) and 7.1%, respectively. MSN-QB has pH response characteristics. The release of 8-HQ and BTA are both inhibited under neutral conditions, but can be released under alkaline (pH=10) and acidic (pH=4) conditions. The release rate under alkaline conditions is higher. MQB coating has the best corrosion resistance. After immersed in 3.5%NaCl solution 20 d, the MQB coating has the largest|Z|0.01 Hz value(2.0×109 Ω·cm2), more than twice that of MQ+MB coating.

Key wordscorrosion inhibitor combination    loading method    layer-by-layer self-assembly    aluminum alloy    corrosion resistance
收稿日期: 2021-01-19      出版日期: 2022-02-23
中图分类号:  TG174.4  
通讯作者: 于美     E-mail: yumei@buaa.edu.cn
作者简介: 于美(1981-), 女, 教授, 研究方向为材料腐蚀科学与防护技术, 联系地址: 北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191), E-mail: yumei@buaa.edu.cn
引用本文:   
陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
Gaohong CHEN, Yue ZHANG, Yingquan LI, Jianhua LIU, Mei YU. Effect of container loading method of corrosion inhibitor combination on corrosion resistance of aluminum alloy coating. Journal of Materials Engineering, 2022, 50(2): 153-163.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000051      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/153
Fig.1  MSN-QB的组装过程及结构示意图
Coating label Nanocontainer in coating
Blank No
M MSN
MQ MSN/8-HQ/PSS/PEI(MSN-Q)
MB MSN/BTA/PSS/PEI(MSN-B)
MQB MSN/8-HQ/PSS/BTA/PSS/PEI(MSN-QB)
MQ+MB MSN/8-HQ/PSS/PEI+MSN/BTA/PSS/PEI(MSN-Q+MSN-B, mass ratio: MSN-Q/MSN-B=1/1)
Table 1  添加不同负载方式缓蚀剂的纳米容器的环氧树脂涂层标签
Fig.2  MSN的SEM图(a)和TEM图(b), 氮气吸附/脱附等温线(c)以及孔径分布(d)
Fig.3  MSN-QB的TEM图
Fig.4  不同样品的FT-IR图谱
Fig.5  MSN在负载8-HQ和逐层组装PSS, PEI和BTA过程中的Zeta电位测试
Fig.6  不同样品的热重分析曲线
Fig.7  不同pH条件下MSN-QB中BTA(a)和8-HQ(b)的释放量曲线
Fig.8  涂覆空白涂层(a)和MQB涂层(b)后试样表面的SEM图
Fig.9  MQB涂层截面的SEM图(a)和Si元素分布图(b)
Fig.10  不同涂层与基体的结合力
Fig.11  在添加不同缓蚀剂的0.05 mol/L NaCl溶液中浸泡后试样的动电位极化曲线
Sample Ecorr/V ba/mV -bc/mV icorr /(μA·cm-2) η/%
Blank -0.60182 15.731 394.82 10.210
8-HQ -0.60482 13.388 501.92 2.076 79.67
BTA -0.58950 30.589 336.04 3.244 68.22
8-HQ+BTA -0.59470 13.774 431.57 1.071 89.51
Table 2  不同溶液中浸泡1 h后试样动电位极化曲线的拟合结果
Fig.12  涂覆不同涂层的铝合金在3.5%NaCl溶液中浸泡1 h(1)和20 d(2)后的阻抗曲线
(a)Nyquist图;(b),(c)Bode图
Fig.13  涂覆不同涂层的铝合金在3.5%NaCl溶液浸泡1 h(a)和20 d(b)后的拟合等效电路
Coating label Rcoat/(Ω·cm2) CPEcoat/(Ω-1·cm-2·sn) ncoat Ro/(Ω·cm2) CPEo/(Ω-1·cm-2·sn) no Rct/(Ω·cm2) CPEdl/(Ω-1·cm-2·sn) ndl
Blank 1.3×106 4.9×10-10 0.96 2.9×106 7.5×10-8 0.57 1.6×107 6.7×10-7 0.69
M 1.5×106 1.6×10-9 0.80 3.8×106 4.2×10-9 0.76 1.1×108 2.7×10-8 0.54
MQ 2.2×106 6.3×10-10 0.87 6.5×107 1.5×10-8 0.63 2.4×108 2.6×10-8 0.55
MB 1.6×106 3.6×10-10 0.90 1.5×107 9.0×10-10 0.83 5.1×108 5.1×10-10 0.67
MQ+MB 1.8×106 8.4×10-10 0.85 4.5×108 6.5×10-10 0.93 6.8×108 1.3×10-8 0.97
MQB 1.2×108 2.0×10-10 0.95 7.7×108 1.1×10-9 0.67 1.3×109 9.2×10-9 0.71
Table 3  铝合金在3.5%NaCl溶液浸泡后的EIS等效电路拟合电化学参数
Fig.14  预制划痕的不同涂层在0.05 mol/L NaCl溶液中浸泡9 d的光学照片
(a)空白涂层;(b)M膜层;(c)MQ涂层;(d)MB涂层;(e)MQ+MB涂层;(f)MQB涂层
Fig.15  MQB涂层腐蚀防护机制示意图
1 SAMADZADEH M , BOURA H S , PEIKARI M . A review on self-healing coatings based on micro/nanocapsules[J]. Progress in Organic Coatings, 2010, 68 (3): 159- 164.
doi: 10.1016/j.porgcoat.2010.01.006
2 ZHANG F , JU P F , PAN M Q , et al. Self-healing mechanisms in smart protective coatings: a review[J]. Corrosion Science, 2018, 144, 74- 88.
doi: 10.1016/j.corsci.2018.08.005
3 LEAL D A , RIEGEL-VIDOTTI I C , FERREIRA M G S , et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection[J]. Corrosion Science, 2018, 130, 56- 63.
doi: 10.1016/j.corsci.2017.10.009
4 IZADI M , SHAHRABI T , RAMEZANZADEH B . Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers[J]. Applied Surface Science, 2018, 440, 491- 505.
doi: 10.1016/j.apsusc.2018.01.185
5 TAVANDASHTI N P , GHORBANI M , SHOJAEI A , et al. Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J]. Corrosion Science, 2016, 112, 138- 149.
doi: 10.1016/j.corsci.2016.07.003
6 杜娟, 魏子明, 郑世辑, 等. 金属表面制备绿色环保防腐膜技术的研究进展[J]. 材料工程, 2020, 48 (2): 22- 31.
6 DU J , WEI Z M , ZHENG S J , et al. Research progress in preparation technology of green environmental anticorrosion coating on metal surface[J]. Journal of Materials Engineering, 2020, 48 (2): 22- 31.
7 MA X , XU L K , WANG W , et al. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy[J]. Corrosion Science, 2017, 120, 139- 147.
doi: 10.1016/j.corsci.2017.02.004
8 ZHENG Z L , HUANG X , SCHENDERLEIN M , et al. Self-healing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers[J]. Advanced Functional Materials, 2013, 23 (26): 3307- 3314.
doi: 10.1002/adfm.201203180
9 XU J B , CAO Y Q , FANG L , et al. A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings[J]. Corrosion Science, 2018, 140, 349- 362.
doi: 10.1016/j.corsci.2018.05.030
10 SHI H W , WU L P , WANG J , et al. Sub-micrometer mesoporous silica containers for active protective coatings on AA 2024-T3[J]. Corrosion Science, 2017, 127, 230- 239.
doi: 10.1016/j.corsci.2017.08.030
11 王赟, 胡军, 王甜甜, 等. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47 (2): 122- 128.
11 WANG Y , HU J , WANG T T , et al. Synergistic effect of Mannich base and sodium tungstate as corrosion inhibition for N80 steel[J]. Journal of Materials Engineering, 2019, 47 (2): 122- 128.
12 GAO H , LI Q , DAI Y , et al. High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy[J]. Corrosion Science, 2010, 52 (5): 1603- 1609.
doi: 10.1016/j.corsci.2010.01.033
13 ABDOLAH Z M , TEDIM J , ZHELUDKEVICH M , et al. Synergetic active corrosion protection of AA2024-T3 by 2D-anionic and 3D-cationic nanocontainers loaded with Ce and mercaptobenzothiazole[J]. Corrosion Science, 2018, 135, 35- 45.
doi: 10.1016/j.corsci.2018.02.018
14 GHAZI A , GHASEMI E , MAHDAVIAN M , et al. The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating[J]. Corrosion Science, 2015, 94, 207- 217.
doi: 10.1016/j.corsci.2015.02.007
15 THOMMES M , SMARSLY B , GROENEWOLT M , et al. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas[J]. Langmuir, 2006, 22 (2): 756- 764.
doi: 10.1021/la051686h
16 XIONG L L , LIU J H , YU M , et al. Improving the corrosion protection properties of PVB coating by using salicylaldehyde@ZIF-8/graphene oxide two-dimensional nanocomposites[J]. Corrosion Science, 2019, 146, 70- 79.
doi: 10.1016/j.corsci.2018.10.016
17 BORISOVA D , MÖHWALD H , SHCHUKIN D G . Mesoporous silica nanoparticles for active corrosion protection[J]. ACS Nano, 2011, 5 (3): 1939- 1946.
doi: 10.1021/nn102871v
18 RECLOUX I , MOUANGA M , DRUART M E , et al. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys[J]. Applied Surface Science, 2015, 346, 124- 133.
doi: 10.1016/j.apsusc.2015.03.191
19 SHCHUKIN D G , ZHELUDKEVICH M , YASAKAU K , et al. Layer-by-layer assembled nanocontainers for self-healing corrosion protection[J]. Advanced Materials, 2006, 18 (13): 1672- 1678.
doi: 10.1002/adma.200502053
20 SHCHUKIN D G , MÖHWALD H . Surface-engineered nanocontainers for entrapment of corrosion inhibitors[J]. Advanced Functional Materials, 2007, 17 (9): 1451- 1458.
doi: 10.1002/adfm.200601226
21 LVOV Y M , SHCHUKIN D G , MÖHWALD H , et al. Halloysite clay nanotubes for controlled release of protective agents[J]. ACS Nano, 2008, 2 (5): 814- 820.
doi: 10.1021/nn800259q
22 SUN W , WANG L , WU T , et al. Inhibiting the corrosion-promotion activity of graphene[J]. Chemistry of Materials, 2015, 27 (7): 2367- 2373.
doi: 10.1021/cm5043099
[1] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[2] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[3] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[4] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[5] 王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
[6] 陈海燕, 曾越, 李艺, 吴建新, 许世锬, 邹燕成. 基于非线性超声空化效应的铝合金热浸镀工艺[J]. 材料工程, 2021, 49(7): 133-140.
[7] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[8] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[9] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[10] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[11] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[12] 唐全, 张锁德, 徐民, 王建强. 陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响[J]. 材料工程, 2021, 49(11): 125-135.
[13] 吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
[14] 陈亚军, 徐鹏达, 王付胜, 刘辰辰. 基于DIC的铝合金薄壁缺口件多轴疲劳行为[J]. 材料工程, 2021, 49(1): 168-176.
[15] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn