The N-doped carbon nanofiber coated graphene nanosheets (NFGNs) were designed and constructed using EGNs as the skeleton and PPy as the carbon source. The samples were characterized by SEM, XRD, Raman, FTIR, XPS and BET. The results show that the interconnected N-doped carbon nanofibers are uniformly coated on the surface of EGNs. The NFGNs-800 presents high-level nitrogen atom doping of 11.53% and large specific surface area of 477.65 m2·g-1. The capacitance performance test results show that the NFGNs-800 electrode material exhibits high specific capacitance of 323.3 F·g-1 (1.0 A·g-1) and good rate characteristic. NFGNs-800 supercapacitor shows high energy density of 87.1 Wh·kg-1 at power density of 10500 W·kg-1. The specific capacitance of the supercapacitor is 95.9% of the initial specific capacitance and the columbic efficiency still remains above 99% after 10000 constant current charge discharge cycles.
MERCY R B , SIDDULU N T , STALIN J , et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47 (8): 2680- 2721.
doi: 10.1039/C7CS00787F
ZHENG J S , QIN N , GUO X , et al. High energy density supercapacitors: electrode materials, electrolyte and energy density limitation principle[J]. Journal of Materials Engineering, 2020, 48 (9): 47- 58.
3
LI P , MA X X , LIU F , et al. Synthesis of highly ordered mesoporous carbons nanofiber web based on electrospinning strategy for supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 305, 110283.
doi: 10.1016/j.micromeso.2020.110283
4
WEI Q L , XIONG F Y , TAN S S , et al. Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials, 2017, 29 (20): 1602300.
doi: 10.1002/adma.201602300
5
HE Y F , ZHUANG X D , LEI C J , et al. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications[J]. Nanotoday, 2019, 24, 103- 119.
doi: 10.1016/j.nantod.2018.12.004
6
SHAO H , WU Y C , LIN Z F , et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49 (10): 3005- 3039.
doi: 10.1039/D0CS00059K
7
WANG J , WANG Y L , HU H B , et al. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives[J]. Nanoscale, 2020, 12 (7): 4238- 4268.
doi: 10.1039/C9NR09697C
8
YANG X , KONG L Y , MA J F , et al. Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor[J]. Journal of Applied Electrochemistry, 2019, 49, 241- 250.
doi: 10.1007/s10800-018-1270-7
9
LI J Y , ZHANG W M , ZHANG X , et al. Copolymer derived micro/meso porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8 (5): 2463- 2471.
doi: 10.1039/C9TA08850D
10
JIANG Q , LIU M Z , SHAO C L , et al. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage[J]. Electrochimica Acta, 2020, 330, 135212.
doi: 10.1016/j.electacta.2019.135212
11
PHAM D T , LEE T H , LUANG D H , et al. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors[J]. ACS Nano, 2015, 9 (2): 2018- 2027.
doi: 10.1021/nn507079x
WANG Y , YAO H X , YU J , et al. Synthesis of PI-MWCNTs flexible electrode material loaded on carbon cloth and its capacitive performance[J]. Journal of Materials Engineering, 2021, 49 (9): 51- 59.
13
WANG J , YU P , KAN K , et al. Efficient ultra-trace electrochemical detection of Cd2+, Pb2+ and Hg2+ based on hierarchical porous S-doped C3N4 tube bundles/graphene nanosheets composite[J]. Chemical Engineering Journal, 2021, 423, 130317.
KAN K , WANG J , FU D , et al. Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons[J]. Journal of Materials Engineering, 2020, 44 (8): 101- 109.
LI S J , ZHANG J G , LI J X , et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46 (7): 157- 164.
16
ZHAO X W , NIE G D , LUAN Y X , et al. Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes[J]. Journal of Alloys and Compounds, 2019, 808, 151737.
doi: 10.1016/j.jallcom.2019.151737
17
SHALINI K , NADHRAH S , YUSRAN S . Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material[J]. Scientific Reports, 2019, 9, 4884.
doi: 10.1038/s41598-019-41203-3
18
RUPALI S M , SURESHA P R , VIKASH C , et al. In situ synthesis of nitrogen and sulfur enriched hierarchical porous carbon for high-performance supercapacitor[J]. Energy Fuels, 2018, 32 (1): 908- 915.
doi: 10.1021/acs.energyfuels.7b02305
19
LIU S L , CHEN Y , REN J , et al. An effective interaction in polypyrrole/nickel phosphide (PPy/Ni2P) for high-performance supercapacitor[J]. Journal of Solid State Electrochemistry, 2019, 23, 3409- 3418.
doi: 10.1007/s10008-019-04443-x
20
HE B , WANG Y , ZHAI Q L , et al. From polymeric carbon nitride to carbon materials: extended application to electrochemical energy conversion and storage[J]. Nanoscale, 2020, 12 (16): 8636- 8646.
doi: 10.1039/D0NR01612H
21
NOORI A , EL-KADY M F , RAHMANIFAR M S , et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48 (5): 1272- 1340.
doi: 10.1039/C8CS00581H