Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 94-102    DOI: 10.11868/j.issn.1001-4381.2021.000461
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性
阚侃, 王珏, 付东, 郑明明, 张晓臣()
黑龙江省科学院高技术研究院, 哈尔滨 150020
Construction and capacitive performance of N-doped carbon nanofiber coated graphene nanosheets
Kan KAN, Jue WANG, Dong FU, Mingming ZHENG, Xiaochen ZHANG()
Institute of Advanced Technology of Heilongjiang Academy of Sciences, Harbin 150020, China
全文: PDF(11066 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以石墨烯纳米片为骨架,聚吡咯为碳源,设计构建氮掺杂碳纤维包覆石墨烯纳米片(NFGNs)复合材料。采用SEM,XRD,Raman,FTIR,XPS和BET对材料进行表征,结果表明:相互连通的氮掺杂碳纳米纤维均匀地包覆生长在石墨烯纳米片层表面;NFGNs-800复合材料的氮原子分数为11.53%,比表面积为477.65 m2·g-1。电容特性测试结果表明:NFGNs-800电极材料的比电容为323.3 F·g-1(1.0 A·g-1),且具有良好的倍率特性;NFGNs-800超级电容器在功率密度为10500 W·kg-1时,能量密度为87.1 Wh·kg-1;经过10000次恒流充放电循环后,比电容保持率95.9%,库仑效率保持在99%以上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阚侃
王珏
付东
郑明明
张晓臣
关键词 石墨烯纳米片氮掺杂碳纤维电容特性超级电容器    
Abstract

The N-doped carbon nanofiber coated graphene nanosheets (NFGNs) were designed and constructed using EGNs as the skeleton and PPy as the carbon source. The samples were characterized by SEM, XRD, Raman, FTIR, XPS and BET. The results show that the interconnected N-doped carbon nanofibers are uniformly coated on the surface of EGNs. The NFGNs-800 presents high-level nitrogen atom doping of 11.53% and large specific surface area of 477.65 m2·g-1. The capacitance performance test results show that the NFGNs-800 electrode material exhibits high specific capacitance of 323.3 F·g-1 (1.0 A·g-1) and good rate characteristic. NFGNs-800 supercapacitor shows high energy density of 87.1 Wh·kg-1 at power density of 10500 W·kg-1. The specific capacitance of the supercapacitor is 95.9% of the initial specific capacitance and the columbic efficiency still remains above 99% after 10000 constant current charge discharge cycles.

Key wordsgraphene nanosheet    N-doped carbon nanofiber    capacitive performance    supercapacitor
收稿日期: 2021-05-14      出版日期: 2022-02-23
中图分类号:  O646  
  TQ152  
基金资助:黑龙江省自然科学基金项目(LH2019B030);黑龙江省科学院科学研究基金项目(KY2021GJS01)
通讯作者: 张晓臣     E-mail: 13946165731@163.com
作者简介: 张晓臣(1968-), 男, 研究员级高级工程师, 硕士, 主要从事石墨深加工技术、3D打印金属粉末制备技术、功能复合材料等技术研究及开发工作, 联系地址: 黑龙江省哈尔滨市松北区科技一街99号(150020), E-mail: 13946165731@163.com
引用本文:   
阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
Kan KAN, Jue WANG, Dong FU, Mingming ZHENG, Xiaochen ZHANG. Construction and capacitive performance of N-doped carbon nanofiber coated graphene nanosheets. Journal of Materials Engineering, 2022, 50(2): 94-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000461      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/94
Fig.1  EGNs(a)和PPy/EGNs前驱体(b), (c)样品的SEM图
Fig.2  NFGNs-750(a),NFGNs-800(b)和NFGNs-850(c)样品的SEM图
Fig.3  样品的XRD谱图(a), Raman谱图(b)和FTIR谱图(c)
Fig.4  NFGNs-800的XPS谱图(a)全谱谱图;(b)N1s谱图;(c)C1s谱图;(d)O1s谱图
Sample Atom fraction/%
C1s N1s O1s
NFGNs-750 83.87 12.37 3.76
NFGNs-800 85.46 11.53 3.01
NFGNs-850 87.13 10.05 2.82
Table 1  NFGNs-750, NFGNs-800和NFGNs-850样品的元素含量
Fig.5  NFGNs-750, NFGNs-800, NFGNs-850, NCNF-800和EGNs-800的N2吸附-脱附曲线
Fig.6  样品的电极的电容特性
(a)CV曲线; (b)电化学阻抗Nyquist图;(c)GCD曲线;(d)比电容随电流密度变化曲线
Fig.7  NFGNs-800超级电容器的电化学性能
(a)不同扫描速度时的CV测试曲线; (b)电化学阻抗Nyquist图; (c)不同电流密度时的GCD测试曲线; (d)能量密度随功率密度的变化图; (e)循环稳定性和库仑效率随循环次数变化曲线; (f)循环最后10次的GCD曲线
1 MERCY R B , SIDDULU N T , STALIN J , et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47 (8): 2680- 2721.
doi: 10.1039/C7CS00787F
2 郑俊生, 秦楠, 郭鑫, 等. 高比能超级电容器: 电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48 (9): 47- 58.
2 ZHENG J S , QIN N , GUO X , et al. High energy density supercapacitors: electrode materials, electrolyte and energy density limitation principle[J]. Journal of Materials Engineering, 2020, 48 (9): 47- 58.
3 LI P , MA X X , LIU F , et al. Synthesis of highly ordered mesoporous carbons nanofiber web based on electrospinning strategy for supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 305, 110283.
doi: 10.1016/j.micromeso.2020.110283
4 WEI Q L , XIONG F Y , TAN S S , et al. Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials, 2017, 29 (20): 1602300.
doi: 10.1002/adma.201602300
5 HE Y F , ZHUANG X D , LEI C J , et al. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications[J]. Nanotoday, 2019, 24, 103- 119.
doi: 10.1016/j.nantod.2018.12.004
6 SHAO H , WU Y C , LIN Z F , et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49 (10): 3005- 3039.
doi: 10.1039/D0CS00059K
7 WANG J , WANG Y L , HU H B , et al. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives[J]. Nanoscale, 2020, 12 (7): 4238- 4268.
doi: 10.1039/C9NR09697C
8 YANG X , KONG L Y , MA J F , et al. Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor[J]. Journal of Applied Electrochemistry, 2019, 49, 241- 250.
doi: 10.1007/s10800-018-1270-7
9 LI J Y , ZHANG W M , ZHANG X , et al. Copolymer derived micro/meso porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8 (5): 2463- 2471.
doi: 10.1039/C9TA08850D
10 JIANG Q , LIU M Z , SHAO C L , et al. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage[J]. Electrochimica Acta, 2020, 330, 135212.
doi: 10.1016/j.electacta.2019.135212
11 PHAM D T , LEE T H , LUANG D H , et al. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors[J]. ACS Nano, 2015, 9 (2): 2018- 2027.
doi: 10.1021/nn507079x
12 王瑶, 么贺祥, 俞娟, 等. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49 (9): 51- 59.
12 WANG Y , YAO H X , YU J , et al. Synthesis of PI-MWCNTs flexible electrode material loaded on carbon cloth and its capacitive performance[J]. Journal of Materials Engineering, 2021, 49 (9): 51- 59.
13 WANG J , YU P , KAN K , et al. Efficient ultra-trace electrochemical detection of Cd2+, Pb2+ and Hg2+ based on hierarchical porous S-doped C3N4 tube bundles/graphene nanosheets composite[J]. Chemical Engineering Journal, 2021, 423, 130317.
14 阚侃, 王珏, 付东, 等. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 44 (8): 101- 109.
14 KAN K , WANG J , FU D , et al. Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons[J]. Journal of Materials Engineering, 2020, 44 (8): 101- 109.
15 李诗杰, 张继刚, 李金晓, 等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46 (7): 157- 164.
15 LI S J , ZHANG J G , LI J X , et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46 (7): 157- 164.
16 ZHAO X W , NIE G D , LUAN Y X , et al. Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes[J]. Journal of Alloys and Compounds, 2019, 808, 151737.
doi: 10.1016/j.jallcom.2019.151737
17 SHALINI K , NADHRAH S , YUSRAN S . Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material[J]. Scientific Reports, 2019, 9, 4884.
doi: 10.1038/s41598-019-41203-3
18 RUPALI S M , SURESHA P R , VIKASH C , et al. In situ synthesis of nitrogen and sulfur enriched hierarchical porous carbon for high-performance supercapacitor[J]. Energy Fuels, 2018, 32 (1): 908- 915.
doi: 10.1021/acs.energyfuels.7b02305
19 LIU S L , CHEN Y , REN J , et al. An effective interaction in polypyrrole/nickel phosphide (PPy/Ni2P) for high-performance supercapacitor[J]. Journal of Solid State Electrochemistry, 2019, 23, 3409- 3418.
doi: 10.1007/s10008-019-04443-x
20 HE B , WANG Y , ZHAI Q L , et al. From polymeric carbon nitride to carbon materials: extended application to electrochemical energy conversion and storage[J]. Nanoscale, 2020, 12 (16): 8636- 8646.
doi: 10.1039/D0NR01612H
21 NOORI A , EL-KADY M F , RAHMANIFAR M S , et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48 (5): 1272- 1340.
doi: 10.1039/C8CS00581H
[1] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[2] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[3] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[4] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[5] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[6] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[7] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[8] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[9] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[10] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[13] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[14] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[15] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn