Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 1-14    DOI: 10.11868/j.issn.1001-4381.2021.000512
  储能材料专栏 本期目录 | 过刊浏览 | 高级检索 |
柔性储能电池电极的设计、制备与应用
黄英(), 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚
西北工业大学 化学与化工学院,西安 710129
Design, preparation and application of electrodes for flexible energy storage batteries
Ying HUANG(), Chen CHEN, Chao LI, Jiaming WANG, Shuai ZHANG, Zheng ZHANG, Quanxing JIA, Mengwei LU, Xiaopeng HAN, Xiaogang GAO
College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(22299 KB)   HTML ( 80 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着便携式、可穿戴电子器件的迅速发展,柔性储能器件的研究逐渐转向微型化、轻柔化和智能化等方向。同时人们对器件的能量密度、功率密度和力学性能有了更高的要求。电极材料作为柔性储能器件的核心部分,是决定器件性能的关键。柔性储能电子器件的发展,又迫切需要新型电池技术和快速、低成本且可精准控制其微结构的制备方法。因此,柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池等新型储能器件的研发成为目前学术界研究的热点。本文论述了近年来柔性储能电池电极的研究现状,着重对柔性电极材料的设计(独立柔性电极和柔性基底电极)、不同维度柔性电极材料的制备工艺(一维材料、二维材料和三维材料)和柔性储能电极的应用(柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池)进行对比分析,并对电极材料的结构特性和电化学性能进行了讨论。最后,指出了柔性储能器件目前所面临的问题,并针对此类问题展望了柔性储能器件未来的重点在于新型固态电解质的研发、器件结构的合理设计及封装技术的不断优化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄英
陈晨
李超
王佳明
张帅
张政
贾全兴
路梦伟
韩小鹏
高小刚
关键词 柔性储能器件电极设计可穿戴设备制备工艺    
Abstract

With the rapid development of portable and wearable electronic devices, research on flexible energy storage devices has gradually shifted to the directions of miniaturization, softness and intelligence. At the same time, people have higher requirements for the energy density, power density and mechanical properties of the device. As the core part of flexible energy storage devices, electrode material is the key to determining device performance. With the development of flexible energy storage electronic devices, there is an urgent need for new battery technology and fast, low cost and precise control of their microstructure preparation methods. Therefore, the research and development of new energy storage devices such as flexible lithium/sodium-ion batteries, flexible lithium-sulfur batteries, and flexible zinc-air batteries have become the current research hotspots in academia. The current research status of flexible energy storage battery electrodes in recent years was discussed in this paper, the design of flexible electrode materials (independent flexible electrodes and flexible substrate electrodes), and the preparation process of flexible electrode materials of different dimensions (one-dimensional materials, two-dimensional materials and three-dimensional materials) and applications of flexible energy storage electrodes (flexible lithium/sodium ion batteries, flexible lithium-sulfur batteries, flexible zinc-air batteries) were compared and analyzed, and the structural characteristics and electrochemical properties of electrode materials were discussed. Finally, the current problems faced by flexible energy storage devices were pointed out, and the future focus of flexible energy storage devices was the research and development of new solid electrolytes, the rational design of device structures and the continuous optimization of packaging technology.

Key wordsflexible    energy storage device    electrode design    wearable device    preparation process
收稿日期: 2021-05-31      出版日期: 2022-04-18
中图分类号:  TM91  
基金资助:国家自然科学基金项目(51872236);国家自然科学基金项目(52072307)
通讯作者: 黄英     E-mail: yingh@nwpu.edu.cn
作者简介: 黄英(1961—),女,教授,博士生导师,主要从事功能材料的研究,联系地址:陕西省西安市长安区东祥路1号西北工业大学化学与化工学院(710129),E-mail: yingh@nwpu.edu.cn
引用本文:   
黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
Ying HUANG, Chen CHEN, Chao LI, Jiaming WANG, Shuai ZHANG, Zheng ZHANG, Quanxing JIA, Mengwei LU, Xiaopeng HAN, Xiaogang GAO. Design, preparation and application of electrodes for flexible energy storage batteries. Journal of Materials Engineering, 2022, 50(4): 1-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000512      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/1
Fig.1  柔性基底电极制备流程图
(a)Ni-MOF@NiS2@C核壳异质纳米结构的制备示意图[10];(b)Na-Ti3C2Tx-CC金属阳极制备流程图[14]
Fig.2  一维电极材料的制备示意图
(a)中空碳纤维织物的制备流程图及实物图[20];(b)碳纳米管纤维实物图[21];(c)石墨烯@聚合物核-壳纤维(G@PFs)的制备流程图[22]
Fig.3  溅射镀膜技术[25]
(a)在PET衬底上沉积ITO/Cu/ITO多层膜的中试RTR溅射工艺原理图;(b)在涂覆顶层ITO层之前,在倒卷辊上轧制Cu/ITO/PET基板;(c)涂覆在PET基材上的透明弯曲ITO/Cu/ITO多层膜图片
Fig.4  喷墨印刷电极[28]
(a)印刷电极的柔韧性展示图;(b)电极SEM横截面图;(c)FESEM图像
Fig.5  叉指式锂离子微电池[32]
(a)LFP-LTO叉指式锂离子微电池的制备示意图;(b)LFP-LTO的SEM图;(c)封装后由LTO-LFP电极组成的3D微型电池的光学图像
Fig.6  可伸缩储能设备
(a)基于设备尺度波状结构和弹性黏性隔板的可伸缩电池示意图[34];(b)折叠式锂电池的折叠示意图[35]
Fig.7  使用集成的三合一纤维膜组装的Li-S袋电池在不同折叠状态下的LED照明测试[44]
Fig.8  锌-空气电池制备原理及性能测试[49]
(a)TEAOH-PVA电解质的合成及柔性ZAB的原理图;(b)~(d)柔性ZAB在LED屏幕、电子手表和手机上的应用;(e)柔性ZAB在不同弯折程度的循环性能测试
1 LI H , ZHANG X , ZHAO Z , et al. Flexible sodium-ion based energy storage devices: recent progress and challenges[J]. Energy Storage Materials, 2020, 26, 83- 104.
doi: 10.1016/j.ensm.2019.12.037
2 VERMA S , GOYAL M , KUMAR S , et al. Enhanced electrochemical performance of copper oxide nanobeads a potential electrode material for energy storage devices[J]. Chemical Physics Letters, 2020, 749, 137472.
doi: 10.1016/j.cplett.2020.137472
3 WANG D , HAN C , MO F , et al. Energy density issues of flexible energy storage devices[J]. Energy Storage Materials, 2020, 28, 264- 292.
doi: 10.1016/j.ensm.2020.03.006
4 WANG R H , DAI X Y , QIAN Z F , et al. Boosting lithium storage in free-standing black phosphorus anode via multifunction of nanocellulose[J]. ACS Applied Materials & Interfaces, 2020, 12 (28): 31628- 31636.
5 GUO W , YAN X , HOU F , et al. Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries[J]. Carbon, 2019, 152, 888- 897.
doi: 10.1016/j.carbon.2019.06.088
6 ALI S , WAQAS M , CHEN N , et al. Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries[J]. Composites Part B: Engineering, 2019, 174, 107025.
doi: 10.1016/j.compositesb.2019.107025
7 KAISER M R , HAN Z , WANG J . Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery[J]. Journal of Power Sources, 2019, 437, 226925.
doi: 10.1016/j.jpowsour.2019.226925
8 WANG J G , JIN D , ZHOU R , et al. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries[J]. ACS Nano, 2016, 6227- 6234.
9 WANG X W , GUO H P , LIANG J , et al. An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28 (26): 1801016.
doi: 10.1002/adfm.201801016
10 LEE C S , LIM J M , PARK J T , et al. Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device[J]. Chemical Engineering Journal, 2020, 406, 126810.
11 YIN D , HUANG G , WANG S , et al. Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: in situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8 (3): 1425- 1431.
doi: 10.1039/C9TA10772J
12 WANG Y , WANG J , MOHAMED Z , et al. A free-standing CeO2/Co3O4 nanowires electrode featuring a controllable discharge/charge product evolution route with enhanced catalytic performance for Li-O2 batteries[J]. Applied Materials Today, 2020, 19, 100603.
doi: 10.1016/j.apmt.2020.100603
13 ZHOU Y , JIN X , NI J , et al. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode[J]. Journal of Solid State Electrochemistry, 2019, 23 (6): 1829- 1836.
doi: 10.1007/s10008-019-04285-7
14 FANG Y Z , LIAN R Q , LI H P , et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14 (7): 8744- 8753.
doi: 10.1021/acsnano.0c03259
15 LU Q , ZOU X , LIAO K , et al. Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-air batteries[J]. Carbon Energy, 2020, 2 (3): 461- 471.
doi: 10.1002/cey2.50
16 WANG C , ZHANG J , WANG X , et al. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30 (45): 2002629.
doi: 10.1002/adfm.202002629
17 WANG C , WANG X , LIN C , et al. Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries[J]. Chemical Engineering Journal, 2020, 386, 123981.
doi: 10.1016/j.cej.2019.123981
18 LUO G , HU X , LIU W , et al. Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes[J]. Journal of Energy Chemistry, 2021, 58, 285- 291.
doi: 10.1016/j.jechem.2020.09.017
19 VIGOLO B , PENICAUD A , COULON C , et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290 (5495): 1331- 1334.
doi: 10.1126/science.290.5495.1331
20 LI Q X , WANG J M , LIU C , et al. Controlled design of a robust hierarchically porous and hollow carbon fiber textile for high-performance freestanding electrodes[J]. Advanced Science, 2019, 6 (21): 1900762.
doi: 10.1002/advs.201900762
21 JIANG K , LI Q , FAN S . Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419 (6909): 801.
doi: 10.1038/419801a
22 SASIKALA S P , LEE K E , LIM J , et al. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors[J]. ACS Nano, 2017, 11 (9): 9424- 9434.
doi: 10.1021/acsnano.7b05029
23 SHAO W , TEBYETEKERWA M , MARRIAM I , et al. Polyester@ MXene nanofibers-based yarn electrodes[J]. Journal of Power Sources, 2018, 396, 683- 690.
doi: 10.1016/j.jpowsour.2018.06.084
24 MARRIAM I , WANG X , TEBYETEKERWA M , et al. A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties[J]. Journal of Materials Chemistry A, 2018, 6 (28): 13633- 13643.
doi: 10.1039/C8TA03262A
25 PARK S , LEE S M , KO E , et al. Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications[J]. Scientific Reports, 2016, 6 (1): 1- 12.
doi: 10.1038/s41598-016-0001-8
26 DHAR A , ALFORD T L . High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering[J]. APL Materials, 2013, 1 (1): 012102.
doi: 10.1063/1.4808438
27 DELANNOY P E , RIOU B , LESTRIEZ B , et al. Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries[J]. Journal of Power Sources, 2015, 274, 1085- 1090.
doi: 10.1016/j.jpowsour.2014.10.164
28 EL BARADAI O , BENEVENTI D , ALLOIN F , et al. Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrodes in lithium ion batteries[J]. Journal of Materials Science & Technology, 2016, 32 (6): 566- 572.
29 LI L , WU Z , YUAN S , et al. Advances and challenges for flexible energy storage and conversion devices and systems[J]. Energy & Environmental Science, 2014, 7 (7): 2101- 2122.
30 KWAK Y H , KIM W , PARK K B , et al. Flexible heartbeat sensor for wearable device[J]. Biosensors and Bioelectronics, 2017, 94, 250- 255.
doi: 10.1016/j.bios.2017.03.016
31 WANG Y , CHEN C , XIE H , et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017, 27 (43): 1703140.
doi: 10.1002/adfm.201703140
32 SUN K , WEI T S , AHN B Y , et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25 (33): 4539- 4543.
doi: 10.1002/adma.201301036
33 MAUREL A , COURTY M , FLEUTOT B , et al. Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing[J]. Chemistry of Materials, 2018, 30 (21): 7484- 7493.
doi: 10.1021/acs.chemmater.8b02062
34 LIU W , CHEN J , CHEN Z , et al. Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator[J]. Advanced Energy Materials, 2017, 7 (21): 1701076.
doi: 10.1002/aenm.201701076
35 CHENG Q , SONG Z , MA T , et al. Folding paper-based lithium-ion batteries for higher areal energy densities[J]. Nano Letters, 2013, 13 (10): 4969- 4974.
doi: 10.1021/nl4030374
36 ZHU C , LIU T , QIAN F , et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16 (6): 3448- 3456.
doi: 10.1021/acs.nanolett.5b04965
37 YAO B , CHANDRASEKARAN S , ZHANG H , et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels[J]. Advanced Materials, 2020, 32 (8): 1906652.
doi: 10.1002/adma.201906652
38 YUN X , LU B , XIONG Z , et al. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor[J]. RSC Advances, 2019, 9 (50): 29384- 29395.
doi: 10.1039/C9RA04882K
39 WANG Z , ZHANG Q , LONG S , et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor[J]. ACS Applied Materials & Interfaces, 2018, 10 (12): 10437- 10444.
40 FOSTER C W , DOWN M P , ZHANG Y , et al. 3D printed graphene based energy storage devices[J]. Scientific Reports, 2017, 7 (1): 1- 11.
doi: 10.1038/s41598-016-0028-x
41 PRAVEEN S , SIM G S , SHAJI N , et al. 3D-printed self-standing electrodes for flexible Li-ion batteries[J]. Applied Materials Today, 2022, 26, 100980.
doi: 10.1016/j.apmt.2021.100980
42 SHI S , LI Z , SHEN L , et al. Electrospun free-standing FeP@ NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials, 2020, 29, 78- 83.
doi: 10.1016/j.ensm.2020.03.029
43 PRAVEEN S , SANTHOSHKUMAR P , JOE Y C , et al. 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices[J]. Applied Materials Today, 2020, 20, 100688.
doi: 10.1016/j.apmt.2020.100688
44 WANG J , YANG G , CHEN J , et al. Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes[J]. Advanced Energy Materials, 2019, 9 (38): 1902001.
doi: 10.1002/aenm.201902001
45 CHEN C , JIANG J , HE W , et al. 3D printed high-loading lithium-sulfur battery toward wearable energy storage[J]. Advanced Functional Materials, 2020, 30 (10): 1909469.
doi: 10.1002/adfm.201909469
46 LI Y , GONG M , LIANG Y , et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications, 2013, 4 (1): 1- 7.
47 XU N , ZHANG Y , WANG M , et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane[J]. Nano Energy, 2019, 65, 104021.
doi: 10.1016/j.nanoen.2019.104021
48 LI Y , FAN X , LIU X , et al. Long-battery-life flexible zinc-air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode[J]. Journal of Materials Chemistry A, 2019, 7 (44): 25449- 25457.
doi: 10.1039/C9TA09137H
49 LI M , LIU B , FAN X , et al. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (32): 28909- 28917.
50 HUANG J F , LUO Q , ZOU J Z , et al. Electrostatic spun hierarchically porous carbon matrix with CoSe2/Co heterostructure as bifunctional electrocatalysts for zinc-air batteries[J]. Journal of Alloys and Compounds, 2021, 875, 160056.
doi: 10.1016/j.jallcom.2021.160056
[1] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[2] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[3] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[4] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[5] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[6] 陈港, 彭从星, 况宇迪, 曾勇, 朱朋辉, 姚日晖, 宁洪龙, 方志强. 纳米纸衬底的制备、性能及其在柔性电子器件中的应用[J]. 材料工程, 2018, 46(6): 1-10.
[7] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[8] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[9] 金欣, 畅旭东, 王闻宇, 朱正涛, 林童. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展[J]. 材料工程, 2018, 46(11): 13-24.
[10] 马慧, 高强, 夏永辉, 刘婉婉, 葛明桥. AZO@C柔性纳米纤维的制备与性能[J]. 材料工程, 2018, 46(1): 119-124.
[11] 郭安儒, 李杰, 肖德海, 刘畅. 高柔性隔热软木复合材料的制备与性能[J]. 材料工程, 2017, 45(11): 1-9.
[12] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[13] 郝红英, 王茜, 王文俊. CRGP柔性导电薄膜及其超级电容器制备与性能[J]. 材料工程, 2015, 43(7): 26-31.
[14] 张保法. 化学气相沉积中的气相生长碳纤维[J]. 材料工程, 2015, 43(11): 9-12.
[15] 刘莹莹, 郑立静, 张虎. 快速凝固Al-Fe-V-Si耐热铝合金研究进展[J]. 材料工程, 2015, 43(11): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn