With the rapid development of portable and wearable electronic devices, research on flexible energy storage devices has gradually shifted to the directions of miniaturization, softness and intelligence. At the same time, people have higher requirements for the energy density, power density and mechanical properties of the device. As the core part of flexible energy storage devices, electrode material is the key to determining device performance. With the development of flexible energy storage electronic devices, there is an urgent need for new battery technology and fast, low cost and precise control of their microstructure preparation methods. Therefore, the research and development of new energy storage devices such as flexible lithium/sodium-ion batteries, flexible lithium-sulfur batteries, and flexible zinc-air batteries have become the current research hotspots in academia. The current research status of flexible energy storage battery electrodes in recent years was discussed in this paper, the design of flexible electrode materials (independent flexible electrodes and flexible substrate electrodes), and the preparation process of flexible electrode materials of different dimensions (one-dimensional materials, two-dimensional materials and three-dimensional materials) and applications of flexible energy storage electrodes (flexible lithium/sodium ion batteries, flexible lithium-sulfur batteries, flexible zinc-air batteries) were compared and analyzed, and the structural characteristics and electrochemical properties of electrode materials were discussed. Finally, the current problems faced by flexible energy storage devices were pointed out, and the future focus of flexible energy storage devices was the research and development of new solid electrolytes, the rational design of device structures and the continuous optimization of packaging technology.
LI H , ZHANG X , ZHAO Z , et al. Flexible sodium-ion based energy storage devices: recent progress and challenges[J]. Energy Storage Materials, 2020, 26, 83- 104.
doi: 10.1016/j.ensm.2019.12.037
2
VERMA S , GOYAL M , KUMAR S , et al. Enhanced electrochemical performance of copper oxide nanobeads a potential electrode material for energy storage devices[J]. Chemical Physics Letters, 2020, 749, 137472.
doi: 10.1016/j.cplett.2020.137472
3
WANG D , HAN C , MO F , et al. Energy density issues of flexible energy storage devices[J]. Energy Storage Materials, 2020, 28, 264- 292.
doi: 10.1016/j.ensm.2020.03.006
4
WANG R H , DAI X Y , QIAN Z F , et al. Boosting lithium storage in free-standing black phosphorus anode via multifunction of nanocellulose[J]. ACS Applied Materials & Interfaces, 2020, 12 (28): 31628- 31636.
5
GUO W , YAN X , HOU F , et al. Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries[J]. Carbon, 2019, 152, 888- 897.
doi: 10.1016/j.carbon.2019.06.088
6
ALI S , WAQAS M , CHEN N , et al. Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries[J]. Composites Part B: Engineering, 2019, 174, 107025.
doi: 10.1016/j.compositesb.2019.107025
7
KAISER M R , HAN Z , WANG J . Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery[J]. Journal of Power Sources, 2019, 437, 226925.
doi: 10.1016/j.jpowsour.2019.226925
8
WANG J G , JIN D , ZHOU R , et al. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries[J]. ACS Nano, 2016, 6227- 6234.
9
WANG X W , GUO H P , LIANG J , et al. An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28 (26): 1801016.
doi: 10.1002/adfm.201801016
10
LEE C S , LIM J M , PARK J T , et al. Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device[J]. Chemical Engineering Journal, 2020, 406, 126810.
11
YIN D , HUANG G , WANG S , et al. Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: in situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8 (3): 1425- 1431.
doi: 10.1039/C9TA10772J
12
WANG Y , WANG J , MOHAMED Z , et al. A free-standing CeO2/Co3O4 nanowires electrode featuring a controllable discharge/charge product evolution route with enhanced catalytic performance for Li-O2 batteries[J]. Applied Materials Today, 2020, 19, 100603.
doi: 10.1016/j.apmt.2020.100603
13
ZHOU Y , JIN X , NI J , et al. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode[J]. Journal of Solid State Electrochemistry, 2019, 23 (6): 1829- 1836.
doi: 10.1007/s10008-019-04285-7
14
FANG Y Z , LIAN R Q , LI H P , et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14 (7): 8744- 8753.
doi: 10.1021/acsnano.0c03259
15
LU Q , ZOU X , LIAO K , et al. Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-air batteries[J]. Carbon Energy, 2020, 2 (3): 461- 471.
doi: 10.1002/cey2.50
16
WANG C , ZHANG J , WANG X , et al. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30 (45): 2002629.
doi: 10.1002/adfm.202002629
17
WANG C , WANG X , LIN C , et al. Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries[J]. Chemical Engineering Journal, 2020, 386, 123981.
doi: 10.1016/j.cej.2019.123981
18
LUO G , HU X , LIU W , et al. Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes[J]. Journal of Energy Chemistry, 2021, 58, 285- 291.
doi: 10.1016/j.jechem.2020.09.017
19
VIGOLO B , PENICAUD A , COULON C , et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290 (5495): 1331- 1334.
doi: 10.1126/science.290.5495.1331
20
LI Q X , WANG J M , LIU C , et al. Controlled design of a robust hierarchically porous and hollow carbon fiber textile for high-performance freestanding electrodes[J]. Advanced Science, 2019, 6 (21): 1900762.
doi: 10.1002/advs.201900762
21
JIANG K , LI Q , FAN S . Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419 (6909): 801.
doi: 10.1038/419801a
22
SASIKALA S P , LEE K E , LIM J , et al. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors[J]. ACS Nano, 2017, 11 (9): 9424- 9434.
doi: 10.1021/acsnano.7b05029
23
SHAO W , TEBYETEKERWA M , MARRIAM I , et al. Polyester@ MXene nanofibers-based yarn electrodes[J]. Journal of Power Sources, 2018, 396, 683- 690.
doi: 10.1016/j.jpowsour.2018.06.084
24
MARRIAM I , WANG X , TEBYETEKERWA M , et al. A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties[J]. Journal of Materials Chemistry A, 2018, 6 (28): 13633- 13643.
doi: 10.1039/C8TA03262A
25
PARK S , LEE S M , KO E , et al. Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications[J]. Scientific Reports, 2016, 6 (1): 1- 12.
doi: 10.1038/s41598-016-0001-8
26
DHAR A , ALFORD T L . High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering[J]. APL Materials, 2013, 1 (1): 012102.
doi: 10.1063/1.4808438
27
DELANNOY P E , RIOU B , LESTRIEZ B , et al. Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries[J]. Journal of Power Sources, 2015, 274, 1085- 1090.
doi: 10.1016/j.jpowsour.2014.10.164
28
EL BARADAI O , BENEVENTI D , ALLOIN F , et al. Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrodes in lithium ion batteries[J]. Journal of Materials Science & Technology, 2016, 32 (6): 566- 572.
29
LI L , WU Z , YUAN S , et al. Advances and challenges for flexible energy storage and conversion devices and systems[J]. Energy & Environmental Science, 2014, 7 (7): 2101- 2122.
30
KWAK Y H , KIM W , PARK K B , et al. Flexible heartbeat sensor for wearable device[J]. Biosensors and Bioelectronics, 2017, 94, 250- 255.
doi: 10.1016/j.bios.2017.03.016
31
WANG Y , CHEN C , XIE H , et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017, 27 (43): 1703140.
doi: 10.1002/adfm.201703140
32
SUN K , WEI T S , AHN B Y , et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25 (33): 4539- 4543.
doi: 10.1002/adma.201301036
33
MAUREL A , COURTY M , FLEUTOT B , et al. Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing[J]. Chemistry of Materials, 2018, 30 (21): 7484- 7493.
doi: 10.1021/acs.chemmater.8b02062
34
LIU W , CHEN J , CHEN Z , et al. Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator[J]. Advanced Energy Materials, 2017, 7 (21): 1701076.
doi: 10.1002/aenm.201701076
35
CHENG Q , SONG Z , MA T , et al. Folding paper-based lithium-ion batteries for higher areal energy densities[J]. Nano Letters, 2013, 13 (10): 4969- 4974.
doi: 10.1021/nl4030374
36
ZHU C , LIU T , QIAN F , et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16 (6): 3448- 3456.
doi: 10.1021/acs.nanolett.5b04965
37
YAO B , CHANDRASEKARAN S , ZHANG H , et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels[J]. Advanced Materials, 2020, 32 (8): 1906652.
doi: 10.1002/adma.201906652
38
YUN X , LU B , XIONG Z , et al. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor[J]. RSC Advances, 2019, 9 (50): 29384- 29395.
doi: 10.1039/C9RA04882K
39
WANG Z , ZHANG Q , LONG S , et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor[J]. ACS Applied Materials & Interfaces, 2018, 10 (12): 10437- 10444.
40
FOSTER C W , DOWN M P , ZHANG Y , et al. 3D printed graphene based energy storage devices[J]. Scientific Reports, 2017, 7 (1): 1- 11.
doi: 10.1038/s41598-016-0028-x
41
PRAVEEN S , SIM G S , SHAJI N , et al. 3D-printed self-standing electrodes for flexible Li-ion batteries[J]. Applied Materials Today, 2022, 26, 100980.
doi: 10.1016/j.apmt.2021.100980
42
SHI S , LI Z , SHEN L , et al. Electrospun free-standing FeP@ NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials, 2020, 29, 78- 83.
doi: 10.1016/j.ensm.2020.03.029
43
PRAVEEN S , SANTHOSHKUMAR P , JOE Y C , et al. 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices[J]. Applied Materials Today, 2020, 20, 100688.
doi: 10.1016/j.apmt.2020.100688
44
WANG J , YANG G , CHEN J , et al. Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes[J]. Advanced Energy Materials, 2019, 9 (38): 1902001.
doi: 10.1002/aenm.201902001
45
CHEN C , JIANG J , HE W , et al. 3D printed high-loading lithium-sulfur battery toward wearable energy storage[J]. Advanced Functional Materials, 2020, 30 (10): 1909469.
doi: 10.1002/adfm.201909469
46
LI Y , GONG M , LIANG Y , et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications, 2013, 4 (1): 1- 7.
47
XU N , ZHANG Y , WANG M , et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane[J]. Nano Energy, 2019, 65, 104021.
doi: 10.1016/j.nanoen.2019.104021
48
LI Y , FAN X , LIU X , et al. Long-battery-life flexible zinc-air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode[J]. Journal of Materials Chemistry A, 2019, 7 (44): 25449- 25457.
doi: 10.1039/C9TA09137H
49
LI M , LIU B , FAN X , et al. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (32): 28909- 28917.
50
HUANG J F , LUO Q , ZOU J Z , et al. Electrostatic spun hierarchically porous carbon matrix with CoSe2/Co heterostructure as bifunctional electrocatalysts for zinc-air batteries[J]. Journal of Alloys and Compounds, 2021, 875, 160056.
doi: 10.1016/j.jallcom.2021.160056