Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 35-42    DOI: 10.11868/j.issn.1001-4381.2021.000296
  异质材料连接及界面行为专栏 本期目录 | 过刊浏览 | 高级检索 |
热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理
张昌青1,2,*(), 王树文2, 罗德春3, 师文辰2, 刘晓2, 崔国胜2, 陈波阳2, 辛舟3, 芮执元3
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学 材料科学与工程学院,兰州 730050
3 兰州理工大学 机电工程学院,兰州 730050
Influence mechanism of thermoelectric coupling on microstructure of aluminum/steel continuous drive friction welding joints
Changqing ZHANG1,2,*(), Shuwen WANG2, Dechun LUO3, Wenchen SHI2, Xiao LIU2, Guosheng CUI2, Boyang CHEN2, Zhou XIN3, Zhiyuan RUI3
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(18773 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用连续驱动摩擦焊技术焊接纯铝1060/Q235低碳钢异质接头,开展两个周期(30天/60天)热电耦合实验(静载392 N+高温300 ℃+直流60 A),研究热电耦合对铝/钢异质接头焊缝微观组织、力学性能及界面生长的影响。结果表明:原始态接头界面径向金属间化合物(IMCs)层厚度不均匀,中心区域无明显IMCs生成。热电耦合30天后界面中心生成宽度为0.3~0.5 μm且以颗粒状由钢侧向铝侧弥散分布的IMCs层,整体拉伸断裂在铝母材的热力影响区。热电耦合60天后IMCs层与钢侧之间出现腐蚀沟槽,IMCs破碎,钢侧无裂纹产生,铝侧形成大量由IMCs层向铝母材内部扩展的裂纹和孔洞,焊缝及裂纹尖端处成分偏析,整体拉伸断裂在焊缝处。界面腐蚀和失效速率与界面IMCs层的厚度成正比,即vcenterv1/2Rv2/3R。由于原始态接头界面组织不均匀以及热电耦合实验过程中界面不同位置组织生长速率的差异,使得热电耦合后接头界面2/3R位置出现不同断裂形貌的分界线,2/3R内侧以准解理断裂方式为主,2/3R外侧为韧窝断裂和准解理断裂的综合结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昌青
王树文
罗德春
师文辰
刘晓
崔国胜
陈波阳
辛舟
芮执元
关键词 铝/钢异质接头连续驱动摩擦焊热电耦合微观组织    
Abstract

Continuous drive friction welding technology was used to weld pure aluminum 1060/Q235 low carbon steel dissimilar material joints, and two cycles (30 d/60 d) thermoelectric coupling test (static load 392 N +high temperature 300 ℃+DC 60 A) was carried out. The effect of thermoelectric coupling on the microstructure, mechanical properties and interface growth of the welded joints of aluminum/steel dissimilar materials was studied. The results show that the thickness of the intermetallic compounds (IMCs) layer in the radial direction of the original joint interface is uneven, and there is no obvious IMCs formation in the central area. After 30 days of thermoelectric coupling, an IMCs layer with a width of 0.3-0.5 μm at the center of the interface is formed and dispersed from the steel side to the aluminum side in granular form, the overall tensile fracture is in the thermally affected zone of the aluminum base metal. After 60 days of thermoelectric coupling, a corrosion groove appears between the IMCs layer and the steel side, and the IMCs are broken, there are no cracks on the steel side, a large number of cracks and voids from the IMCs layer to the aluminum base metal are formed on the aluminum side, segregation of components occurs at the weld and crack tip, the overall tensile fracture is at the weld. The speed of interfacial corrosion and failure rate is proportional to the thickness of the interface IMCs layer, namely vcenter < v1/2R < v2/3R. Due to the uneven structure of the original joint interface and the difference in the growth rate of the structure at different positions of the interface during the thermoelectric coupling test, the boundary line of different fracture morphologies appears at the 2/3R position of the joint interface after thermoelectric coupling. The inner side of 2/3R is dominated by quasi-cleavage fracture, and the outer side of 2/3R is the combined result of dimple fracture and quasi-cleavage fracture.

Key wordsaluminum/steel dissimilar joint    continuous drive friction welding    thermoelectric coupling    microstructure
收稿日期: 2021-04-06      出版日期: 2022-05-23
中图分类号:  TG456  
基金资助:国家自然科学基金资助项目(51961025)
通讯作者: 张昌青     E-mail: zhangcq@lut.cn
作者简介: 张昌青(1973—),男,副研究员,博士,主要研究方向为先进材料的摩擦焊、钎焊及阻焊等固相连接的基础理论与应用技术,联系地址:甘肃省兰州市七里河区兰工坪路287号兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室425室(730050),E-mail: zhangcq@lut.cn
引用本文:   
张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
Changqing ZHANG, Shuwen WANG, Dechun LUO, Wenchen SHI, Xiao LIU, Guosheng CUI, Boyang CHEN, Zhou XIN, Zhiyuan RUI. Influence mechanism of thermoelectric coupling on microstructure of aluminum/steel continuous drive friction welding joints. Journal of Materials Engineering, 2022, 50(5): 35-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000296      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/35
Sample C Mn Si P S Mg Cu Fe Al
1060 pure aluminum 0.03 0.25 0.03 0.05 0.35 Bal
Q235 low carbon steel 0.18 1.4 0.3 0.045 0.045 Bal
Table 1  母材的主要化学成分(质量分数/%)
Rotation speed/(r·min-1) Friction pressure/MPa Friction time/s Forging pressure/MPa Forging time/s
1500 30 1 80 1
Table 2  实验用工艺参数
Fig.1  热电耦合实验示意图
(a)热电耦合示意图; (b)热电耦合过程
Fig.2  接头宏观形貌
Fig.3  未经热电耦合(1)、热电耦合30天(2)和热电耦合60天(3)接头界面不同位置的IMCs厚度及形貌
(a)中心; (b)1/2R; (c)2/3R
Fig.4  热电耦合60天接头中心区域的IMCs层形貌
(a)背散射图片; (b)线扫描
Fig.5  拉伸断口宏观形貌
(a)热电耦合作用30天; (b)热电耦合作用60天
Fig.6  热电耦合60天接头拉伸断口形貌
(a)Q235钢; (b)1060Al
Fig.7  铝侧拉伸断口形貌
(a)铝侧径向断裂表面宏观形貌; (b)~(e)图(a)中b, c, d, e虚线矩形区域的放大图
Fig.8  热电耦合60天接头铝侧2/3R区域拉伸断口形貌
(a)二次电子图; (b)EDS点扫描
Fig.9  图 8中的EDS点扫描对应的能谱图
1 JIN Y , LI Y , ZHANG H . Microstructure and mechanical properties of pulsed laser welded Al/steel dissimilar joint[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (4): 994- 1002.
doi: 10.1016/S1003-6326(16)64196-1
2 POLMEAR I J. Light alloys—metallurgy of the light metals[J]. 3rd ed. London: Edward Arnold, 1995.
3 中国机械工程学会焊接学会. 焊接手册: 第1卷[M]. 北京: 机械工业出版社, 1992.
3 Welding Society of Chinese Mechanical Engineering Society . Welding manual: volume 1[M]. Beijing: China Machine Press, 1992.
4 王希靖, 李经纬, 张昌青, 等. 电解铝阳极导杆铝-钢相位摩擦焊工艺及力学性能[J]. 焊接学报, 2015, 36 (9): 83- 86.
4 WANG X J , LI J W , ZHANG C Q , et al. Phase friction welding of aluminum to steel for electrolytic aluminum anode guide rod[J]. Transactions of the China Welding Institution, 2015, 36 (9): 83- 86.
5 顾玉芬, 李杰, 石玗, 等. 铝/钢异种金属电弧熔钎焊焊接接头的腐蚀性能[J]. 中国有色金属学报, 2016, 26 (4): 758- 765.
5 GU Y F , LI J , SHI Y , et al. Corrosion property of arc welding brazed joint between aluminum and steel[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (4): 758- 765.
6 SRAVANTHI S S , ACHARYYA S G , CHAPALA P . Effect of GMAW-brazing and cold metal transfer welding techniques on the corrosion behaviour of aluminium-steel lap joints[J]. Materials Today: Proceedings, 2019, 18, 2708- 2716.
doi: 10.1016/j.matpr.2019.07.133
7 LAI Y S , KAO C L . Characteristics of current crowding in flip-chip solder bumps[J]. Microelectronics Reliability, 2006, 46 (5/6): 915- 922.
8 何洪文, 徐广臣, 郝虎, 等. SnAgCu无铅焊点的电迁移行为研究[J]. 电子元件与材料, 2007, 26 (11): 53- 55.
doi: 10.3969/j.issn.1001-2028.2007.11.017
8 HE H W , XU G C , HAO H , et al. Electromigration behavior of SnAgCu lead-free soldering point[J]. Electronic Components and Materials, 2007, 26 (11): 53- 55.
doi: 10.3969/j.issn.1001-2028.2007.11.017
9 CHIU S H, LIANG S W, CHEN C, et al. Joule heating effect under accelerated electromigration in flip-chip solder joints[C]//56th Electronic Components and Technology Conference 2006. San Diego, CA: IEEE, 2006: 9075378.
10 吴懿平, 张金松, 吴丰顺, 等. SnAgCu凸点互连的电迁移[J]. 半导体学报, 2006, 27 (6): 1136- 1140.
10 WU Y P , ZHANG J S , WU F S , et al. Electromigration of SnAgCu solder interconnects[J]. Chinese Journal of Semiconductors, 2006, 27 (6): 1136- 1140.
11 LIU Y , ZHAO H , PENG Y , et al. Microstructure characterization and mechanical properties of the continuous-drive axial friction welded aluminum/stainless steel joint[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104 (9): 4399- 4408.
12 WANG H , KOU R , HARRINGTON T , et al. Electromigration effect in Fe-Al diffusion couples with field-assisted sintering[J]. Acta Materialia, 2020, 186, 631- 643.
doi: 10.1016/j.actamat.2020.01.008
13 WANG Q , LENG X S , YANG T H , et al. Effects of Fe-Al intermetallic compounds on interfacial bonding of clad materials[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (1): 279- 284.
doi: 10.1016/S1003-6326(14)63058-2
14 冯健, 韩靖, 张雪梅, 等. 7A04铝合金/304不锈钢连续驱动摩擦焊及焊后热处理[J]. 焊接学报, 2018, 39 (8): 11- 17.
14 FENG J , HAN J , ZHANG X M , et al. Continuous drive friction welding and post welding heat treatment of 7A04 aluminum alloy and 304 stainless steel[J]. Transactions of the China Wel-ding Institution, 2018, 39 (8): 11- 17.
15 RICH T , ROBERTS R . The forge phase of friction welding[J]. Welding Research Supplement, 1971, 50 (3): 137.
16 WANG Q , LIU Q , ZHANG Z , et al. An observation and explanation of interior cracking at the interface of solder by electromigration[J]. Microelectronics Reliability, 2019, 97, 79- 84.
doi: 10.1016/j.microrel.2019.04.013
17 杨扬. Sn基钎料/Cu界面柯肯达尔空洞机理研究[D]. 上海: 上海交通大学, 2012.
17 YANG Y. Research on the formation mechanism of Kirkendall voids at the Sn-based solders/Cu interface[D]. Shanghai: Shanghai Jiao Tong University, 2012.
18 ORCHARD H T , GREER A L . Electromigration effects on compound growth at interfaces[J]. Applied Physics Letters, 2005, 86 (23): 231906.
doi: 10.1063/1.1935772
19 SUN M , XIAO K , DONG C , et al. Effect of stress on electrochemical characteristics of pre-cracked ultrahigh strength stainless steel in acid sodium sulphate solution[J]. Corrosion Science, 2014, 89, 137- 145.
doi: 10.1016/j.corsci.2014.08.023
20 尹立孟, 张新平. 电子封装微互连中的电迁移[J]. 电子学报, 2008, 36 (8): 1610- 1614.
doi: 10.3321/j.issn:0372-2112.2008.08.024
20 YIN L M , ZHANG X P . Electromigration in micro-interconnections of electronic packaging[J]. Acta Electronica Sinica, 2008, 36 (8): 1610- 1614.
doi: 10.3321/j.issn:0372-2112.2008.08.024
21 SPRINGER H , KOSTKA A , dos SANTOS J F , et al. Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys[J]. Materials Science and Engineering: A, 2011, 528 (13/14): 4630- 4642.
[1] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[2] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[3] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[4] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[5] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[6] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[7] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[8] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[9] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[10] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[11] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[12] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
[13] 衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
[14] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[15] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn