Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 169-176    DOI: 10.11868/j.issn.1001-4381.2021.000977
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
全Cu3Sn焊点在高温时效下的组织及力学性能
朱阳阳1, 李晓延1,*(), 张伟栋2, 张虎1, 何溪1
1 北京工业大学 材料与制造学部, 北京 100124
2 中国核工业二三建设有限公司, 北京 101300
Microstructure and mechanical property of full Cu3Sn solder joints during high-temperature aging
Yangyang ZHU1, Xiaoyan LI1,*(), Weidong ZHANG2, Hu ZHANG1, Xi HE1
1 Department of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300, China
全文: PDF(1075 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对全Cu3Sn焊点进行620 ℃下不同持续时间的时效处理,研究时效过程中接头微观组织演变,并利用纳米压痕实验及剪切实验表征时效后焊点的力学性能变化。结果表明:在时效过程中,Cu/Cu3Sn界面以平面状析出Cu20Sn6并持续生长,直至Cu3Sn被完全消耗。随后Cu20Sn6向Cu20Sn6和Cu13.7Sn组成的两相层转变,Cu13.7Sn通过消耗两相层在Cu/两相层的界面处以波浪状析出并继续生长,直至占据整个界面区,该过程中伴随着焊缝中间位置孔洞数量和尺寸的生长,最终聚合成微裂纹。Cu20Sn6,Cu3Sn,Cu13.7Sn相的硬度分别为9.62,7.15,4.67 GPa,弹性模量分别为146.5,134.0,133.2 GPa。随时效时间的增加,焊点的抗剪强度呈先增大后减小的趋势,在120 min内保持大于20.1 MPa;其断口形貌和断裂路径也随之发生变化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱阳阳
李晓延
张伟栋
张虎
何溪
关键词 全Cu3Sn焊点高温时效瞬时液相扩散焊微观组织抗剪强度    
Abstract

620 ℃ thermal aging was carried out on full Cu3Sn solder joints for various duration, the microstructure evolution of solder joints were investigated. The mechanical properties of solder joints after aging were characterized by nano indentation test and shear test. The results show that, during the thermal aging, the Cu20Sn6 is first precipitated in planar along Cu/Cu3Sn interface, it grows continuously until the complete consumption of Cu3Sn. Subsequently, Cu20Sn6 transforms to two-phase layer, which consists of Cu20Sn6 and Cu13.7Sn. As the aging time increases, Cu13.7Sn is precipitated in waves at the Cu/two-phase layer interface by consuming the two-phase layer and grows continuously until it occupies the entire interface area. Meanwhile, there is growth in the number and size of voids in the middle of the solder joint, which eventually coalesces into microcracks. The hardness of Cu20Sn6, Cu3Sn and Cu13.7Sn phases are 9.62, 7.15, 4.67 GPa, and the elasticity modulus are 146.5, 134.0, 133.2 GPa, respectively.With the increase of aging time, the shear strength of solder joints increases first and then decreases, and remains more than 20.1 MPa within 120 min. The fracture morphology and fracture path also change.

Key wordsfull Cu3Sn solder joint    high-temperature aging    transient liquid phase diffusion welding    microstructure    shear strength
收稿日期: 2021-10-09      出版日期: 2022-09-20
中图分类号:  TN406  
基金资助:国家自然科学基金资助项目(51975013)
通讯作者: 李晓延     E-mail: xyli@bjut.edu.cn
作者简介: 李晓延(1963—),男,教授,博士,主要从事微电子组装材料、高性能焊接材料等方面研究,联系地址:北京市朝阳区平乐园100号北京工业大学(100124),E-mail: xyli@bjut.edu.cn
引用本文:   
朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
Yangyang ZHU, Xiaoyan LI, Weidong ZHANG, Hu ZHANG, Xi HE. Microstructure and mechanical property of full Cu3Sn solder joints during high-temperature aging. Journal of Materials Engineering, 2022, 50(9): 169-176.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000977      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/169
Fig.1  全Cu3Sn焊点制备示意图
Fig.2  Cu/Cu3Sn/Cu焊点在620 ℃下时效不同时间的界面区SEM图及EDS分析
(a)7 min;(b)7.5 min;(c)8 min;(d)10 min;(e)12 min;(f)15 min;(g)60 min;(h)120 min
Fig.3  620 ℃下Cu/Cu3Sn/Cu焊点时效过程中微观组织演变及元素扩散路径示意图
Fig.4  焊点界面元素能谱线分布
(a)Cu/Cu20Sn6/Cu3Sn/Cu20Sn6/Cu;(b)Cu/Cu13.7Sn/ Cu20Sn6/ Cu13.7Sn/Cu
Fig.5  Cu3Sn,Cu20Sn6和Cu13.7Sn的弹性模量和硬度(a)以及载荷-位移曲线(b)
Fig.6  620 ℃下不同时效时间时焊点的抗剪强度-位移曲线
Fig.7  620 ℃下时效不同时间的焊点断口形貌
(a)0 min;(b)7 min;(c)8 min;(d)10 min;(e)60 min;(f)120 min
1 吴金根, 高翔宇, 陈建国, 等. 高温压电材料、器件与应用[J]. 物理学报, 2018, 67 (20): 1- 30.
1 WU J G , GAO X Y , CHEN J G , et al. Review of high temperature piezoelectric materials, devices, and applications[J]. Acta Physica Sinica, 2018, 67 (20): 1- 30.
2 TRAEGER R K , LYSNE P C . High temperature electronics application in well logging[J]. IEEE Trans, 1988, 35 (1): 852- 854.
3 ISHIKO M . Recent R&D activities of power devices for hybrid electric vehicles[J]. R&D Review of Toyota CRDL, 2004, 39 (4): 1- 6.
4 BOSCO N S , ZOK F W . Critical interlayer thickness for transient liquid phase bonding in the Cu-Sn system[J]. Acta Materialia, 2004, 52 (10): 2965- 2972.
doi: 10.1016/j.actamat.2004.02.043
5 ZHANG R , TIAN Y H , HANG C J , et al. Formation mechanism and orientation of Cu3Sn grains in Cu-Sn intermetallic compound joints[J]. Materials Letters, 2013, 110 (1): 137- 140.
6 LIN C F , CHEN L . Effect of Sn grain orientation on the Cu6Sn5 formation in a Sn-based solder under current stressing[J]. Meta-llurgical and Materials Transactions A, 2012, 43 (8): 2571- 2573.
doi: 10.1007/s11661-012-1276-4
7 肖慧, 李晓延, 李凤辉. 热循环条件下SnAgCu/Cu焊点金属间化合物生长及焊点失效行为[J]. 材料工程, 2010, (10): 38- 42.
doi: 10.3969/j.issn.1001-4381.2010.10.009
7 XIAO H , LI X Y , LI F H . growth kinetic of intermetallic compounds and failure behavior for SnAgCu/Cu Solder joints subjected to thermal cycling[J]. Journal of Materials Engineering, 2010, (10): 38- 42.
doi: 10.3969/j.issn.1001-4381.2010.10.009
8 DENG X , SIDHU R S , JOHNSON P , et al. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints[J]. Metallurgical and Materials Transactions A, 2005, 36 (1): 55- 64.
doi: 10.1007/s11661-005-0138-8
9 LIU J H , ZHAO H Y , LI Z L , et al. Microstructure evolution, grain morphology variation and mechanical property change of Cu-Sn intermetallic joints subjected to high-temperature aging[J]. Materials Characterization, 2018, 29 (135): 238- 244.
10 YANG P F , LAI Y S , JIAN S R , et al. Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples[J]. Mate-rials Science and Engineering: A, 2008, 485 (1/2): 305- 310.
11 BHEDWAR H C , RAY K K , KULKARNI S D , et al. Kirkendall effect studies in copper-tin diffusion couples[J]. Scripta Meta-llurgica, 1972, 6 (10): 919- 922.
doi: 10.1016/0036-9748(72)90145-7
12 邹建. 微焊点界面的柯肯达尔孔洞生长及其抑制研究[D]. 武汉: 华中科技大学, 2011.
12 ZOU J. Study on Kirkendall hole growth and its inhibition at microsolder joint interface[D]. Wuhan: Huazhong University of Science and Technology, 2011.
13 杨雪霞. 电子封装中金属间化合物力学性能的研究及焊点可靠性分析[D]. 太原: 太原理工大学, 2013.
13 YANG X X. Research on the mechanical properties of intermetallic compound and analysis of solder joint reliability in electro-nic packaging[D]. Taiyuan: Taiyuan University of Technology, 2013.
14 刘积厚. Cu/Sn/Cu超声辅助TLP连接机理及接头力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
14 LIU J H. Study on the joining mechanisms and mechanical pro-perties of Cu/Sn/Cu joints by the ultrasonic-assisted TLP soldering[D]. Harbin: Harbin Institute of Technology, 2018.
15 CHATTERJEE S C , GUPTA M P . Lattice parameters of some binary and ternary copper alloys[J]. Journal of Applied Crysta-llography, 1975, 8 (4): 492- 493.
doi: 10.1107/S0021889875011041
16 刘春忠. 纳米压痕法表征微电子焊点界面的力学性能[J]. 沈阳航空工业学院学报, 2008, 25 (4): 33- 38.
16 LIU C Z . Characterization of mechanical properties of microelectronic solder joint interface by nanoindentation[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2008, 25 (4): 33- 38.
17 ZHAO M H , SLAUGHTER W S , LI M , et al. Material-length-scale-controlled nanoindentation size effects due to strain-gra-dient plasticity[J]. Acta Materialia, 2003, 51 (15): 4461- 4469.
doi: 10.1016/S1359-6454(03)00281-7
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[3] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[10] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[11] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[12] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[13] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[14] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[15] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn