1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2 The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
The effect of carbon nanotubes (CNTs) on the aging behavior of Mg-9Al matrix composites was studied, and the evolution of microstructures, mechanical properties and thermal conductivity of composites during the aging treatment were discussed. Results show that the addition of CNTs increases the solid solubility of Al in Mg matrix and limited the migration of grain boundaries during the aging process, which can promote the formation of continuous precipitated phases β-Mg17Al12 in CNTs/Mg-9Al composites. The rod-shaped continuous precipitates in coherent relationship with Mg matrix can effectively hinder the dislocation movement, which can improve the mechanical properties of the composites. Besides, the reduction of solid solution Al atoms during aging process and the addition of CNTs can improve the thermal conductivity of the composites. The property evaluation indicates that the tensile yield strength, ultimate tensile strength, diffusivity and thermal conductivity of peak-aged 0.4CNTs/Mg-9Al composite are 275 MPa, 369 MPa, 34.5 mm2/s and 68.4 W/(m·K) respectively, showing 17%, 23%, 43% and 45% increasing in comparison with those of Mg-9Al before aging.
LIU Z , ZHANG K , ZENG X Q . Theory base and application of Mg-base light alloy[M]. Beijing: China Machine Press, 2002: 2- 5.
2
陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005: 1.
2
CHEN Z H . Wrought magnesium alloys[M]. Beijing: Chemical Industry Press, 2005: 1.
3
REN Y , LI F , CHENG H M , et al. Tension-tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite[J]. Carbon, 2003, 41 (11): 2177- 2179.
doi: 10.1016/S0008-6223(03)00248-3
4
MA P C , SIDDIQUI N A , MAROM G , et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review[J]. Composites: Part A, 2010, 41 (10): 1345- 1367.
doi: 10.1016/j.compositesa.2010.07.003
5
VOLKOV A Y , KLIUKIN I V . Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing[J]. Materials Science and Engineering: A, 2015, 627, 56- 60.
doi: 10.1016/j.msea.2014.12.104
6
SHI H L , WANG X J , ZHANG X J , et al. A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes[J]. Journal of Materials Science and Technology, 2016, 32, 1303- 1308.
7
CHEN M L , FAN G L , TAN Z Q , et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites[J]. Materials & Design, 2018, 142, 288- 296.
8
LI H P , DAI X B , ZHAO L X , et al. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process[J]. Journal of Alloys and Compounds, 2019, 785, 146- 155.
doi: 10.1016/j.jallcom.2019.01.144
ZHANG J , LIU C Y . Friction and wear property of CNT-SiC hybrid reinforced aluminum matrix composites prepared by powder metallurgy[J]. Journal of Materials Engineering, 2020, 48 (11): 131- 139.
10
MISHRA M , LQBAL M M , ARKA G N , et al. Microstructural and mechanical studies of multi-walled CNTs/Mg composite fabricated through FSP[J]. Journal of Composite Materials, 2021, 55.
11
GOH C S , WEI J , LEE L C , et al. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Materials Science and Engineering A, 2006, 423, 153- 156.
doi: 10.1016/j.msea.2005.10.071
12
HAN G Q , WANG Z H , LIU K , et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs[J]. Materials Science and Engineering A, 2015, 628, 350- 357.
doi: 10.1016/j.msea.2015.01.039
QIN J Y , LI X Q , JIN P P , et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite[J]. Acta Metallurgica Sinica, 2019, 55 (12): 1537- 1543.
14
PARAMSOTHY M , TAN X H , CHAN J , et al. Carbon nanotube addition to concentrated magnesium alloy AZ81:enhanced ductility with occasional significant increase in strength[J]. Materials & Design, 2013, 45 (6): 15- 23.
15
HOU J T , DU W B , WANG Z H , et al. Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg-6Zn Matrix Composite[J]. Journal of Alloys and Compounds, 2020, 838, 155573.
doi: 10.1016/j.jallcom.2020.155573
DU W B , HOU J T , MENG F J , et al. Study on thermal conductivity of magnesium matrix composites reinforced by carbon nano-tubes[J]. Materials China, 2020, 39 (1): 12- 18.
17
LI B C , HOU L G , WU R Z , et al. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy[J]. Journal of Alloys Compounds, 2017, 722, 772- 777.
doi: 10.1016/j.jallcom.2017.06.148
18
WANG C M , LIU H M , CHEN Y G , et al. Effect of precipitates on thermal conductivity of aged Mg-5Sn alloy[J]. Philosophical Magazine, 2017, 97 (20): 1698- 1707.
doi: 10.1080/14786435.2017.1314562
YANG X Y. Study on thermal conductivity and mechanical properties of Mg-xGd-1Er-yZn-0.6Zr alloys[D]. Beijing: Beijing University of Technology, 2020.
20
DULY D , SIMON J P , BRECHET Y . On the competition between continuous and discontinuous precipitation in binary Mg-Al alloys[J]. Acta Metallurgica et Materialia, 1995, 43 (1): 101- 106.
21
ROBSON J D . Modeling competitive continuous and discontinuous precipitation[J]. Acta Materialia, 2013, 61 (20): 7781- 7790.
22
HOU J T , DU W B , MENG F J , et al. Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant[J]. Journal of Colloid and Interface Science, 2018, 512, 750- 757.
23
RASHAD M , PAN F S , ASIF M , et al. Enhanced ductility of Mg-3Al-1Zn alloy reinforced with short length multi-walled carbon nanotubes using a powder metallurgy method[J]. Progress in Natural Science: Materials International, 2015, 25 (4): 276- 281.
24
ZHANG M X , KELLY P M . Crystallography of Mg17Al12 precipitates in AZ91D alloy[J]. Scripta Materialia, 2003, 48 (5): 647- 652.
25
FENG A H , MA Z Y . Microstructural evolution of cast Mg-Al-Zn during friction stir processing and subsequent aging[J]. Acta Materrialia, 2009, 57, 4248- 4260.
26
CHEN T J , WANG W , ZHANG D H , et al. Effects of heat treatment on microstructure and mechanical properties of ZW21 magnesium alloy[J]. Journal of Alloys Compounds, 2014, 56, 589- 593.
27
SUAREZ S , RAMOS-MOORE E , LECHTHALER B , et al. Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites[J]. Carbon, 2014, 70, 173- 178.
28
HOU J T , DU W B , PARANDE G , et al. Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes[J]. Journal of Alloys and Compounds, 2019, 790, 974- 982.