Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 26-35    DOI: 10.11868/j.issn.1001-4381.2021.000960
  镁基复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
CNTs/Mg-9Al复合材料微观组织、力学及导热性能
李淑波1, 侯江涛2, 孟繁婧1, 刘轲1, 王朝辉1, 杜文博1,*()
1 北京工业大学 材料与制造学部, 北京 100124
2 中国电子科技集团公司第三十八研究所, 合肥 230088
Microstructure, mechanical and thermal properties of CNTs/Mg-9Al composites
Shubo LI1, Jiangtao HOU2, Fanjing MENG1, Ke LIU1, Zhaohui WANG1, Wenbo DU1,*()
1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
全文: PDF(18829 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

研究了CNTs的加入对Mg-9Al镁基复合材料时效行为的影响, 探讨了时效处理过程中微观组织、力学性能及导热性能的演变规律。结果表明: 添加的CNTs增大了基体合金中铝元素的固溶度, 并在时效过程中限制晶界的迁移, 在二者共同作用下, 促进基体中连续β-Mg17Al12相的析出, 且随着CNTs含量的增加, 连续析出的比例增大; 与基体呈共格关系的杆状连续析出相能够有效地阻碍位错运动, 提高复合材料的力学性能, 其中峰时效态0.4CNTs/Mg-9Al复合材料的屈服强度、抗拉强度、热扩散系数和热导率分别为275 MPa, 369 MPa, 34.5 mm2/s和68.4 W/(m·K), 相较于时效前Mg-9Al合金分别提升了17%, 23%, 43%和45%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李淑波
侯江涛
孟繁婧
刘轲
王朝辉
杜文博
关键词 碳纳米管镁基复合材料时效处理力学性能热导率    
Abstract

The effect of carbon nanotubes (CNTs) on the aging behavior of Mg-9Al matrix composites was studied, and the evolution of microstructures, mechanical properties and thermal conductivity of composites during the aging treatment were discussed. Results show that the addition of CNTs increases the solid solubility of Al in Mg matrix and limited the migration of grain boundaries during the aging process, which can promote the formation of continuous precipitated phases β-Mg17Al12 in CNTs/Mg-9Al composites. The rod-shaped continuous precipitates in coherent relationship with Mg matrix can effectively hinder the dislocation movement, which can improve the mechanical properties of the composites. Besides, the reduction of solid solution Al atoms during aging process and the addition of CNTs can improve the thermal conductivity of the composites. The property evaluation indicates that the tensile yield strength, ultimate tensile strength, diffusivity and thermal conductivity of peak-aged 0.4CNTs/Mg-9Al composite are 275 MPa, 369 MPa, 34.5 mm2/s and 68.4 W/(m·K) respectively, showing 17%, 23%, 43% and 45% increasing in comparison with those of Mg-9Al before aging.

Key wordsCNTs    magnesium matrix composites    aging treatment    mechanical property    thermal conductivity
收稿日期: 2021-09-30      出版日期: 2023-01-16
中图分类号:  TB333  
基金资助:国家重点研发项目(2016YFB0301101)
通讯作者: 杜文博     E-mail: duwb@bjut.edu.cn
作者简介: 杜文博(1964—),男,教授,博士,主要从事镁基复合材料、高强镁合金、生物医用镁合金及结构功能一体化高导热镁合金等研究,联系地址:北京市朝阳区平乐园100号北京工业大学材料与制造学部(100124),E-mail: duwb@bjut.edu.cn
引用本文:   
李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
Shubo LI, Jiangtao HOU, Fanjing MENG, Ke LIU, Zhaohui WANG, Wenbo DU. Microstructure, mechanical and thermal properties of CNTs/Mg-9Al composites. Journal of Materials Engineering, 2023, 51(1): 26-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000960      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/26
Fig.1  Mg-9Al合金(a)和0.4CNTs /Mg-9Al复合材料(b)的SEM组织(1)及能谱分析(2)
Fig.2  合金及复合材料在不同温度T5时效处理的硬度变化曲线
(a)Mg-9Al合金;(b)0.4CNTs/Mg-9Al复合材料
Fig.3  Mg-9Al合金及CNTs/Mg-9Al复合材料时效前后的XRD图谱
Fig.4  时效态Mg-9Al合金及CNTs/Mg-9Al复合材料的SEM图
(a)Mg-9Al合金;(b)0.2CNTs/Mg-9Al复合材料;(c)0.4CNTs/Mg-9Al复合材料;(d)0.6CNTs/Mg-9Al复合材料
Fig.5  时效态0.4CNTs/Mg-9Al复合材料中β-Mg17Al12相的TEM照片
(a)杆状相;(b)颗粒相;(c)不规则条状相;(d)纳米颗粒相
Fig.6  0.4CNTs/Mg-9Al复合材料在欠时效态(a)及峰时效态(b)~(d)β-Mg17Al12相的TEM照片
Fig.7  Mg-9Al合金和CNTs/Mg-9Al复合材料的力学性能
(a)时效态样品拉伸应力-应变曲线;(b)时效态样品的屈服强度和抗拉强度;(c)样品时效前后屈服强度;(d)样品时效前后的抗拉强度
State Material TYS /MPa UTS/MPa Elongation/% Diffusivity/(mm2·s-1) Thermal conductivity/(W·m-1·K-1)
Before aging[28] Mg-9Al 235±3 301±5 6±2 24.1±0.2 47.3±0.4
0.2CNTs/Mg-9Al 242±3 346±4 14±1 25.1±0.1 49.6±0.3
0.4CNTs/Mg-9Al 248±5 355±7 15±3 25.5±0.1 50.5±0.2
0.6CNTs/Mg-9Al 230±2 329±1 13±1 26.2±0.2 52.1±0.4
After aging Mg-9Al 245±4 301±5 3±2 31.8±0.2 61.8±0.3
0.2CNTs/Mg-9Al 256±4 346±4 7±1 34.1±0.1 67.3±0.2
0.4CNTs/Mg-9Al 275±1 369±3 5±0 34.5±0.2 68.4±0.2
0.6CNTs/Mg-9Al 254±3 355±1 7±1 35.2±0.1 69.9±0.2
Table 1  时效前后Mg-9Al合金与0.4CNTs/Mg-9Al复合材料的力学和导热性能
Fig.8  时效态0.4CNTs/Mg-9Al复合材料拉伸断裂后的TEM照片
(a)杆状β-Mg17Al12相与位错交互作用;(b)不规则条状及颗粒状β-Mg17Al12相附近的应力集中;(c)纳米颗粒状β-Mg17Al12相周围的点阵畸变; (d)杆状β-Mg17Al12相周围的点阵畸变
1 刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用[M]. 北京: 机械工业出版社, 2002: 2- 5.
1 LIU Z , ZHANG K , ZENG X Q . Theory base and application of Mg-base light alloy[M]. Beijing: China Machine Press, 2002: 2- 5.
2 陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005: 1.
2 CHEN Z H . Wrought magnesium alloys[M]. Beijing: Chemical Industry Press, 2005: 1.
3 REN Y , LI F , CHENG H M , et al. Tension-tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite[J]. Carbon, 2003, 41 (11): 2177- 2179.
doi: 10.1016/S0008-6223(03)00248-3
4 MA P C , SIDDIQUI N A , MAROM G , et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review[J]. Composites: Part A, 2010, 41 (10): 1345- 1367.
doi: 10.1016/j.compositesa.2010.07.003
5 VOLKOV A Y , KLIUKIN I V . Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing[J]. Materials Science and Engineering: A, 2015, 627, 56- 60.
doi: 10.1016/j.msea.2014.12.104
6 SHI H L , WANG X J , ZHANG X J , et al. A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes[J]. Journal of Materials Science and Technology, 2016, 32, 1303- 1308.
7 CHEN M L , FAN G L , TAN Z Q , et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites[J]. Materials & Design, 2018, 142, 288- 296.
8 LI H P , DAI X B , ZHAO L X , et al. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process[J]. Journal of Alloys and Compounds, 2019, 785, 146- 155.
doi: 10.1016/j.jallcom.2019.01.144
9 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48 (11): 131- 139.
9 ZHANG J , LIU C Y . Friction and wear property of CNT-SiC hybrid reinforced aluminum matrix composites prepared by powder metallurgy[J]. Journal of Materials Engineering, 2020, 48 (11): 131- 139.
10 MISHRA M , LQBAL M M , ARKA G N , et al. Microstructural and mechanical studies of multi-walled CNTs/Mg composite fabricated through FSP[J]. Journal of Composite Materials, 2021, 55.
11 GOH C S , WEI J , LEE L C , et al. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Materials Science and Engineering A, 2006, 423, 153- 156.
doi: 10.1016/j.msea.2005.10.071
12 HAN G Q , WANG Z H , LIU K , et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs[J]. Materials Science and Engineering A, 2015, 628, 350- 357.
doi: 10.1016/j.msea.2015.01.039
13 覃嘉宇, 李小强, 金培鹏, 等. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55 (12): 1537- 1543.
13 QIN J Y , LI X Q , JIN P P , et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite[J]. Acta Metallurgica Sinica, 2019, 55 (12): 1537- 1543.
14 PARAMSOTHY M , TAN X H , CHAN J , et al. Carbon nanotube addition to concentrated magnesium alloy AZ81:enhanced ductility with occasional significant increase in strength[J]. Materials & Design, 2013, 45 (6): 15- 23.
15 HOU J T , DU W B , WANG Z H , et al. Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg-6Zn Matrix Composite[J]. Journal of Alloys and Compounds, 2020, 838, 155573.
doi: 10.1016/j.jallcom.2020.155573
16 杜文博, 侯江涛, 孟繁婧, 等. 碳纳米增强镁基复合材料导热性能研究[J]. 中国材料进展, 2020, 39 (1): 12- 18.
16 DU W B , HOU J T , MENG F J , et al. Study on thermal conductivity of magnesium matrix composites reinforced by carbon nano-tubes[J]. Materials China, 2020, 39 (1): 12- 18.
17 LI B C , HOU L G , WU R Z , et al. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy[J]. Journal of Alloys Compounds, 2017, 722, 772- 777.
doi: 10.1016/j.jallcom.2017.06.148
18 WANG C M , LIU H M , CHEN Y G , et al. Effect of precipitates on thermal conductivity of aged Mg-5Sn alloy[J]. Philosophical Magazine, 2017, 97 (20): 1698- 1707.
doi: 10.1080/14786435.2017.1314562
19 杨心语. Mg-xGd-1Er-yZn-0.6Zr合金导热及力学性能研究[D]. 北京: 北京工业大学, 2020.
19 YANG X Y. Study on thermal conductivity and mechanical properties of Mg-xGd-1Er-yZn-0.6Zr alloys[D]. Beijing: Beijing University of Technology, 2020.
20 DULY D , SIMON J P , BRECHET Y . On the competition between continuous and discontinuous precipitation in binary Mg-Al alloys[J]. Acta Metallurgica et Materialia, 1995, 43 (1): 101- 106.
21 ROBSON J D . Modeling competitive continuous and discontinuous precipitation[J]. Acta Materialia, 2013, 61 (20): 7781- 7790.
22 HOU J T , DU W B , MENG F J , et al. Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant[J]. Journal of Colloid and Interface Science, 2018, 512, 750- 757.
23 RASHAD M , PAN F S , ASIF M , et al. Enhanced ductility of Mg-3Al-1Zn alloy reinforced with short length multi-walled carbon nanotubes using a powder metallurgy method[J]. Progress in Natural Science: Materials International, 2015, 25 (4): 276- 281.
24 ZHANG M X , KELLY P M . Crystallography of Mg17Al12 precipitates in AZ91D alloy[J]. Scripta Materialia, 2003, 48 (5): 647- 652.
25 FENG A H , MA Z Y . Microstructural evolution of cast Mg-Al-Zn during friction stir processing and subsequent aging[J]. Acta Materrialia, 2009, 57, 4248- 4260.
26 CHEN T J , WANG W , ZHANG D H , et al. Effects of heat treatment on microstructure and mechanical properties of ZW21 magnesium alloy[J]. Journal of Alloys Compounds, 2014, 56, 589- 593.
27 SUAREZ S , RAMOS-MOORE E , LECHTHALER B , et al. Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites[J]. Carbon, 2014, 70, 173- 178.
28 HOU J T , DU W B , PARANDE G , et al. Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes[J]. Journal of Alloys and Compounds, 2019, 790, 974- 982.
[1] 窦宏通, 王晓旭, 刘晓东, 张典堂. 三维异型纺织复合材料的预制体织造技术及材料力学性能研究进展[J]. 材料工程, 2023, 51(4): 88-102.
[2] 高丁, 孙世杰, 焦健. 温度和助剂含量对放电等离子烧结SiC陶瓷的影响[J]. 材料工程, 2023, 51(3): 52-58.
[3] 贺毅强, 苏前航, 郇昌宝, 冯文, 尚峰, 左立杰, 丁云飞, 王衍, 张一凡, 穆昱学. AlFeNiCrCoTi0.5高熵合金颗粒增强6061铝基复合材料的制备与性能[J]. 材料工程, 2023, 51(3): 67-77.
[4] 常子金, 晏嘉陵, 齐彦昌, 崔冰, 蔡啸涛. NiCrFe合金补焊15Cr2Mo1耐热钢焊缝组织与力学性能[J]. 材料工程, 2023, 51(3): 156-165.
[5] 高炜, 余竹焕, 阎亚雯, 王晓慧, 刘旭亮, 杜伟. Cr对FeCoNiAlCrx高熵合金组织与力学性能的影响[J]. 材料工程, 2023, 51(2): 91-97.
[6] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[7] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[8] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[9] 董博, 余超, 邓承继, 祝洪喜, 丁军, 唐慧. 碳化硅陶瓷导热性能的研究进展[J]. 材料工程, 2023, 51(1): 64-75.
[10] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[11] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[12] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[13] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[14] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[15] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn