Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 39-45    DOI: 10.11868/j.issn.1001-4381.2019.000687
  光催化专栏 本期目录 | 过刊浏览 | 高级检索 |
炭黑/黑色TiO2复合材料的制备及其光催化性能
李涛1,2, 李慧敏1, 卢松涛1, 吴晓宏1
1. 哈尔滨工业大学 化工与化学学院, 哈尔滨 150001;
2. 北京卫星环境工程研究所 可靠性与环境工程技术重点实验室, 北京 100094
Preparation and photocatalytic activity of carbon black/black TiO2 composites
LI Tao1,2, LI Hui-min1, LU Song-tao1, WU Xiao-hong1
1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. National Key Laboratory of Science and Technology on Reliability and Environmental Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
全文: PDF(3401 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过水热和化学还原法合成黑色TiO2(b-TiO2),利用聚多巴胺(PDA)的黏合作用将炭黑(CB)成功负载于b-TiO2,制备CB/b-TiO2复合材料。采用XRD,XPS,SEM和TEM等测试手段来表征和分析复合材料的晶型结构、化学组成及微观形貌。研究CB与b-TiO2质量比对CB/b-TiO2形貌及性能的影响,并通过研究催化剂用量对降解性能的影响,进一步优化了催化剂用量。结果表明,当CB与b-TiO2的质量比为1:2时,所制备的CB/b-TiO2展现出优异的光吸收和光催化的性能;当CB/b-TiO2的使用量为0.5 g/L时,3 min内可将目标污染物孔雀石绿溶液MG(10 mg/L)降解99.5%;经过5次循环实验后,仍能保持89.2%的高降解率,具有良好的再生利用性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涛
李慧敏
卢松涛
吴晓宏
关键词 黑色二氧化钛炭黑光催化孔雀石绿    
Abstract:Black TiO2 (b-TiO2) was synthesized by hydrothermal and chemical reduction methods. Taking advantage of the adhesion effect of poly-dopamine (PDA), CB/b-TiO2 composite material was prepared by modifying b-TiO2 with carbon black (CB). The crystal structure, chemical composition and micro-morphology of the composites were characterized by XRD, XPS, SEM and TEM. The effect of mass ratio of CB to b-TiO2 on morphology and properties of CB/b-TiO2 was studied. The effect of the amount of CB/b-TiO2on photocatalysis degradation properties was also studied and the amount of CB/b-TiO2 was optimized. The results show that when the mass ratio of CB to b-TiO2 is 1:2, the obtained CB/ b-TiO2 has high light absorption performance in the wide spectrum range, CB/b-TiO2exhibits excellent photocatalytic performance. Besides, when the amount of CB/b-TiO2 is 0.5 g/L, the target pollutant malachite green solution MG (10 mg/L) can be degraded by 99.5% after 3 min. Besides, a high degradation rate of 89.2% can still be maintained after 5 cycles, showing good regeneration and utilization performance.
Key wordsblack TiO2    carbon black    photocatalysis    malachite green
收稿日期: 2019-07-22      出版日期: 2020-11-20
中图分类号:  O69  
基金资助: 
通讯作者: 吴晓宏(1977-),女,教授,博士,现从事特种功能材料方向的研究,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学化工与化学学院(150001),E-mail:wuxiaohong@hit.edu.cn     E-mail: wuxiaohong@hit.edu.cn
引用本文:   
李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
LI Tao, LI Hui-min, LU Song-tao, WU Xiao-hong. Preparation and photocatalytic activity of carbon black/black TiO2 composites. Journal of Materials Engineering, 2020, 48(11): 39-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000687      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/39
[1] TONG H, OUYANG S, BI Y, et al. Nano-photocatalytic materials:possibilities and challenges[J]. Advanced Materials, 2012, 24(2):229-251.
[2] ASSADI A, BOUZAZA A, MERABET S, et al. Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor:synergetic effect and mass transfer[J]. Chemical Engineering Journal, 2014,258:119-127.
[3] XU H, OUYANG S, LIU L, et al. Recent advances in TiO2-based photocatalysis[J]. Journal of Materials Chemistry:A, 2014, 2(32):12642-12661.
[4] YENER H B, YILMAZ M, DELIISMAIL O, et al. Clinoptilolite supported rutile TiO2 composites:synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid[J]. Separation and Purification Technology, 2017, 173:17-26.
[5] CHEN C A, CHEN Y M, KOROTCOV A, et al. Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal-organic chemical vapor deposition[J]. Nanotechnology, 2008, 19(7):61-75.
[6] KASUGA T, HIRAMATSU M, HOSON A, et al. ChemInform abstract:titania nanotubes prepared by chemical processing[J]. ChemInform, 2010, 31(2):99-120.
[7] XING Z P, ZHANG J Q, CUI J Y, et al. Recent advances in floating TiO2-based photocatalysts for environmental application[J]. Applied Catalysis B, 2018, 225:452-467.
[8] ANPO M, TAKEUCHI M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. Journal of Catalysis, 2003, 216(1/2):505-516.
[9] ZHANG X, ZHANG Y, ZHOU L, et al. In situ C, N-codoped mesoporous TiO2 nanocrystallites with high surface areas and worm-like structure for efficient photocatalysis[J]. Journal of Porous Materials, 2018, 25(2):571-579.
[10] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018):746-750.
[11] SUN C, JIA Y, YANG X, et al. Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide[J]. The Journal of Physical Chemistry:C, 2011, 115(51):25590-25594.
[12] LESHUK T, PARVIZ R, EVERETT P, et al. Photocatalytic activity of hydrogenated TiO2[J]. ACS Applied Materials & Interfaces, 2013, 5(6):1892-1895.
[13] WANG G, WANG H, LING Y, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(7):3026-3033.
[14] CHEN X, LIU L, HUANG F. Black titanium dioxide (TiO2) nano-materials[J]. Chem Soc Rev, 2015, 44(7):2019.
[15] WANG X, LIANG Y, AN W, et al. Removal of chromium (Ⅵ) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light[J]. Applied Catalysis B, 2017, 219:53-62.
[16] ZHANG Y, CUI W, AN W, et al. Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure[J]. Applied Catalysis B, 2018, 221:36-46.
[17] FENG X, WANG P, HOU J, et al. Oxygen vacancies and phosphorus codoped black titania coated carbon nanotube composite photocatalyst with efficient photocatalytic performance for the degradation of acetaminophen under visible light irradiation[J]. Chemical Engineering Journal, 2018, 352:947-956.
[18] ZHANG D, CONG T, XIA L, et al. Growth of black TiO2 nanowire/carbon fiber composites with dendritic structure for efficient visible-light-driven photocatalytic degradation of methylene blue[J]. Journal of Materials Science, 2019, 54(10):7576-7588.
[19] 黄贤凯,邵泽超,常增花,等. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程,2019, 47(8):13-21. HUANG X K, SHAO Z C, CHANG Z H, et al. Effect of conductive carbon black on electrochemical performance of Li-and Mn-rich layered oxide electrode[J]. Journal of Materials Engineering, 2019, 47(8):13-21.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[3] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[4] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[5] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[6] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[7] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[8] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[9] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[10] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[11] 亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
[12] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[13] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[14] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[15] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn