Please wait a minute...
2222材料工程  2021, Vol. 49 Issue (1): 1-10    DOI: 10.11868/j.issn.1001-4381.2020.000194
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
刘梓洋1,2, 李杨2, 刘兴江1,2, 徐强1
1. 天津大学 化工学院, 天津 300350;
2. 中国电子科技集团公司第十八研究所 化学与物理电源重点实验室, 天津 300384
Research progress of self-repairing polymers in electrochemical energy storage devices
LIU Zi-yang1,2, LI Yang2, LIU Xing-jiang1,2, XU Qiang1
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
2. National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384, China
全文: PDF(10554 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。
E-mail Alert
关键词 自修复聚合物电化学储能电极电解质界面    
Abstract:Self-healing polymer materials are able to self-repair damage and recover themselves after cracks generating to maintain their structural and functional integrity. According to whether additional repair agent is added, self-healing polymers are mainly divided into two categories, namely extrinsic- and intrinsic-based polymers.The key materials of electrochemical energy storage devices will experience irreversible mechanical damage in extreme condition applications, for example, the energy storage device more prone to physical damage inwearable devices during the multiple bending and deformation processes. These problems severely reduce the stability of energy storage and delivery, and shorten the life of the devices. Therefore, the application of self-healing polymers in electrochemical energy storage devices to improve the stability and life of devices has become one of the research hotspots in recent years. Herein,this article summarizes the repair mechanism of self-healing polymer materials (capsule-based, vascular-based, and intrinsic polymers), with main focus on intrinsic self-healing polymer and its research progress in the field of electrochemical energy storage, which based on molecular interactions to achieve multi-time reversible healing without any additional repair agent.The self-healing electrode and electrolyte system were reviewed respectively, and then the self-healing mechanism and its influence on the electrochemical performance of energy storage devices were described. The research progress of self-healing functional polymer as high specific energy electrode binder, interface modification layer and self-healing electrolyte were summarized in detail. Finally, the future perspectives regarding the future development of self-healing polymer materials were also discussed.
Key wordsself-healing polymer    electrochemical energy storage    electrode    electrolyte    interface
收稿日期: 2020-03-09      出版日期: 2021-01-14
中图分类号:  TQ152  
通讯作者: 李杨(1988-),女,高级工程师,博士,研究方向为新型化学电源,联系地址:天津市西青区海泰华科七路6号中国电子科技集团公司第十八研究所(300384),;刘兴江(1965-),男,研究员,博士生导师,博士,研究方向为电能源,联系地址:天津市西青区海泰华科七路6号中国电子科技集团公司第十八研究所(300384),     E-mail:;
刘梓洋, 李杨, 刘兴江, 徐强. 自修复聚合物在电化学储能领域的研究进展[J]. 材料工程, 2021, 49(1): 1-10.
LIU Zi-yang, LI Yang, LIU Xing-jiang, XU Qiang. Research progress of self-repairing polymers in electrochemical energy storage devices. Journal of Materials Engineering, 2021, 49(1): 1-10.
链接本文:      或
[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010,22(3):587-603.
[2] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2013, 13(1):69-73.
[3] CHENG Y T, VERBRUGGE M W. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles[J]. Appl Phys, 2008,104(8):083521-083526.
[4] DIEGELMANN R F, EVANS M C. Wound healing:an overview of acute, fibrotic and delayed healing[J]. Front Bio, 2003,9(71):283-289.
[5] SHCHUKIN D G, ZHELUDKEVICH M, YASAKAU K, et al. Layer-by-layer assembled nanocontainers for self-healing corrosion protection[J].Advanced Materials,2006,18(13):1672-1678.
[6] LI Y, LI L, SUN J. Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie, 2010, 49(35):6129-6133.
[7] WANG X, WANG Y, BI S, et al. Optically transparent antibacterial films capable of healing multiple scratches[J]. Advanced Functional Materials, 2014,24(3):403-411.
[8] WANG J, KATO K, BLOIS A P, et al. Bioinspired omniphobiccoatings with a thermal self-pepairfunction on industrial materials[J]. ACS Applied Materials & Interfaces,2016,8(12):8265-8271.
[9] LI Y, CHEN S, LI X, et al. Highly transparent, nanofiller-reinforced scratch-resistant polymeric composite films capable of healing scratches[J]. ACS Nano, 2015,9(10):10055-10065.
[10] LEI W, CHEN X, HU M, et al. Dynamic spongy films to immobilize hydrophobic antimicrobial peptides for self-healing bactericidal coating[J]. Journal of Materials Chemistry B, 2016,4(38):6358-6365.
[11] CHEN D, WU M, LI B, et al. Layer-by-layer-assembled healable antifouling films[J]. Advanced Materials, 2015,27(39):5882-5888.
[12] OH J Y, RONDEAU-GAGNÉ S, CHIU Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors[J]. Nature, 2016, 539(7629):411-415.
[13] 马埸浩,杜晓渊,胡仁伟,等. 微脉管型自修复复合材料研究进展[J]. 高分子材料科学与工程, 2018,34(1):166-172. MA Y H, DU X Y, HU R W, et al.Development of self-healing composite materials with microvascular networks[J].Polymer Materials Science and Engineering, 2018, 34(1):166-172.
[14] HUYNH T P, SONAR P, HAICK H. Advanced materials for use in soft self-healing devices[J]. Adv Mater, 2017,29(19):1604973.
[15] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001,409(6822):794-797.
[16] 羊海棠,吕群,方征平.聚合物基自修复材料研究进展[J].材料科学与工程学报, 2009, 27(5):798-803. YANG H T,LV Q, FANG Z P. Review of self-healing polymeric composites[J]. Journal of Materials Science & Engineering,2009,27(5):798-803.
[17] GUMULA T, SZATKOWSKI P. Regeneration efficiency of composites containing two-sized capillaries[J]. Polym Composite, 2016,37(4):1223-1230.
[18] KUHL N, BODE S, BOSE R K, et al. Acylhydrazones as reversible covalent crosslinkers for self-healing polymers[J]. Advanced Functional Materials, 2015,25(22):3295-3301.
[19] CANADELL J, GOOSSENS H, KLUMPERMAN B. Self-healing materials based on disulfide links[J]. Macromolecules, 2011,44(8):2536-2541.
[20] YU K, TAYNTON P, ZHANG W, et al. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers[J]. RSC Advances, 2014,4(89):48682-48690.
[21] YU K, TAYNTON P, ZHANG W, et al. Reprocessing and recycling of thermosetting polymers based on bond exchange reactions[J]. RSC Advances, 2014,4(20):10108-10117.
[22] LU Y, GUAN Z. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds[J]. Journal of the American Chemical Society, 2012,134(34):14226-14231.
[23] TAYNTON P, YU K, SHOEMAKER R K, et al. Heat-or water-driven malleability in a highly recyclable covalent network polymer[J]. Advanced Materials, 2014,26(23):3938-3942.
[24] CHEN X. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560):1698-1702.
[25] SHERIDAN R J, ADZIMA B J, BOWMAN C N. Temperature dependent stress relaxation in a model diels-alder network[J]. Aust J Chem, 2011,64(8):1094-1099.
[26] LI J, LIU Q, HO D, et al. Three-dimensional graphene structure for healable flexible electronics based on diels-alder chemistry[J]. ACS Appl Mater Inter, 2018,10(11):9727-9735.
[27] TAYLOR D L, IN H P M. Self-healing hydrogels[J]. Advanced Materials, 2016,28(41):9060-9093.
[28] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology,2012,7:310-315.
[29] WANG C, WU H, CHEN Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J].Nat Chem,2013,5(12):1042-1048.
[30] CHEN Z, WANG C, LOPEZ J, et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder[J]. Adv Energy Mater, 2015,5(8):1401826.
[31] MUNAOKA T, YAN X, LOPEZ J, et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries[J]. Adv Energy Mater, 2018,8(14):1703138.
[32] XU Z, YANG J, TAO Z, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule, 2018, 2(5):950-961.
[33] ZHANG G, YANG Y, CHEN Y, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018,14(29):1801189.
[34] ZHAO Y, ZHANG Y, SUN H, et al. A self-healing aqueous lithium-ion battery[J]. Angew ChemInt Ed, 2016,55(46):14384-14388.
[35] RAO J, LIU N, ZHANG Z, et al. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability[J]. Nano Energy, 2018,51:425-433.
[36] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chem Rev, 2018,118(23):11433-11456.
[37] ZHENG G, WANG C, PEI A, et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating[J]. ACS Energy Lett, 2016,1(6):1247-1255.
[38] YU Y, YIN Y, MA J, et al. Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries[J]. Energy Storage Mater, 2019,18:382-388.
[39] 李杨,丁飞,桑林,等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016,5(5):615-626. LI Y, DING F, SANG L, et al.A review of key materials for all-solid-state lithium ion batteries[J].Energy Storage Sci Technol, 2016, 5(5):615-626.
[40] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016,1(9):1-4.
[41] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017,2(3):1-16.
[42] ZHOU B, HE D, HU J, et al. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries[J]. J Mater Chem A, 2018,6(25):11725-11733.
[43] ZHOU B, ZUO C, XIAO Z, et al. Self-healing polymer electrolytes formed via dual-networks:a new strategy for flexible lithium metal batteries[J].Chem-Eur J,2018,24(72):19200-19207.
[44] ZHOU B, JO Y H, WANG R, et al. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries[J]. J Mater Chem A, 2019,7(17):10354-10362.
[45] GUO P, SU A, WEI Y, et al. Healable, highly conductive, flexible and nonflammable supramolecular ionogelelectrolytes for lithium ion batteries[J]. ACS Appl Mater Inter, 2019,11(21):19413-19420.
[46] XIA S, LOPEZ J, LIANG C, et al. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte[J]. Adv Sci, 2019,6(9):1802353.
[47] WHITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J].Adv Mater,2015,43(27):6922-6927.
[48] 寻之玉,侯璞,刘旸,等. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11):71-83. XUN Z Y, HOU P, LIU Y,et al.Research progress of polymer electrolytes in supercapacitors[J]. Journal of Materials Engineering, 2019,47(11):71-83.
[49] 巩桂芬,徐阿文,邹明贵,等. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5):75-82. GONG G F, XU A W, ZOU M G,et al. Preparation and electrochemical properties of EVOH-SO3Li/poly(vinylidene fluoride-hexafluoropropylene)/hydroxyapatite lithium-ion battery separator[J]. Journal of Materials Engineering, 2020, 48(5):75-82.
[50] WANG Z, TAO F, PAN Q. A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors[J]. J Mater Chem A, 2016,4(45):17732-17739.
[51] HU R, ZHAO J, WANG Y, et al. A highly stretchable, self-healing, recyclable and interfacial adhesion gel:preparation, characterization and applications[J]. Chem Eng J, 2019, 360:334-341.
[52] HUANG Y, ZHONG M, HUANG Y, et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J]. Nat Commun, 2015,6(1):1-8.
[53] HUANG Y, LIU J, WANG J, et al. An intrinsically self-healing NiCo ‖ Zn rechargeable battery by self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte[J]. Angew Chem Int Ed, 2018,10(22):9810-9813.
[54] CHEN C R, QIN H, CONG H P, et al. A highly stretchable and real-time healable supercapacitor[J]. Adv Mater, 2019, 31(19):1900573.
[55] PENG H, LV Y, WEI G, et al. A flexible and self-healing hydrogel electrolyte for smart supercapacitor[J]. Power Sources, 2019,431:210-219.
[1] 张福明, 王静, 张鹏, 时志强. 有机电解液在钠离子电池中的研究进展[J]. 材料工程, 2021, 49(1): 11-22.
[2] 吴浩, 邱锦, 陈卫星, 杨晶晶, 马爱洁, 蔡力帆. 水铝英石/PEO/LiClO4复合固态聚合物电解质中组分相互作用对PEO结晶的影响[J]. 材料工程, 2021, 49(1): 35-43.
[3] 张勋业, 张秋光, 林盼盼, 王春月, 何鹏, 林铁松, 龙伟民. Ti2AlNb合金与钛基复合材料的低温固相扩散连接机理[J]. 材料工程, 2021, 49(1): 95-103.
[4] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[5] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[6] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[7] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[8] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[9] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[10] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
[11] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[12] 张小广, 邓慧宇, 陈庆春, 邦宇, 晏乐安, 那兵. 5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能[J]. 材料工程, 2020, 48(5): 91-99.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张帅, 黄燕萍, 赵国敏, 潘明珠. 基于层层自组装技术的复合聚电解质及其应用研究进展[J]. 材料工程, 2020, 48(12): 12-23.
[15] 刘园, 崔岩, 郭开金, 曹雷刚, 杨越. 高导热金刚石/铝复合材料的研究进展[J]. 材料工程, 2020, 48(12): 44-52.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持