1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 School of Materials Science and Engineering, Shandong University, Jinan 250014, China
NiTi-based shape memory alloys (SMAs) are one of the SMAs with most outstanding properties, and have been widely applied in aviation, space, electronics, construction, biomedicine and other fields. In recent years, the elastocaloric refrigeration based on elastocaloric effect (eCE) of NiTi alloys has attracted increasing attentions since their excellent mechanical properties, huge elastocaloric strength and good machinability. However, conventional binary NiTi alloys cannot meet the requirements of long-life service since their large superelastic stress hysteresis and poor cyclic stability of superelasticity and eCE. In this paper, the research progress of eCE for NiTi-based alloys was reviewed. The effect of doping alloying element, thermomechanical treatment and novel processing techniques on eCE of NiTi-based alloys were surnmarized. In addition, the developed elastocaloric devices or prototypes based on NiTi-based alloys were also briefly introduced. However, the current researches on NiTi-based elastocaloric materials and the development of prototypes are still in the experimental stage. To realize their commercial application requires further in-depth research and optimization. In the future, the research priorities for the former will concentrate on material miniaturization, alloying or applying special treatment as well as changing circulation methods and so on. On the other hand, the research priorities for the latter will focus on improving heat transfer efficiency, strengthening heat exchange, reducing friction and other losses, and improving mechanical loadings as well as circulation modes.
MOYA X , KAR-NARAYAN S , MATHUR N D . Caloric materials near ferroic phase transitions[J]. Nature Materials, 2014, 13, 439- 450.
doi: 10.1038/nmat3951
2
GOETZLER W, ZOGG R, YOUNG J, et al. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies[R]. United States: EERE Publication and Product Library, 2014.
3
BONNOT E , ROMERO R , MAÑOA L , et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 2008, 100 (12): 125901.
doi: 10.1103/PhysRevLett.100.125901
4
MANOSA L , JARQUE-FARNOS S , VIVES E , et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys[J]. Applied Physics Letters, 2013, 103, 211904.
doi: 10.1063/1.4832339
5
XU S , HUANG H Y , XIE J X , et al. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11shape memory alloy[J]. APL Materials, 2016, 4, 106106.
doi: 10.1063/1.4964621
6
CUI J , WU Y M , MUEHLBAUER J , et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires[J]. Applied Physics Letters, 2012, 101, 073904.
doi: 10.1063/1.4746257
7
ZHU X J , ZHANG X X , QIAN M F , et al. Elastocaloric effects related to B2↔R and B2↔B19' martensite transformations in nanocrystalline Ni50.5Ti49.5 microwires[J]. Journal of Alloys and Compouds, 2019, 792, 780- 788.
doi: 10.1016/j.jallcom.2019.04.087
8
CHEN H , XIAO F , LIANG X , et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44 Ni-5Cu-1Al (at%) alloy[J]. Acta Materialia, 2018, 158, 330- 339.
doi: 10.1016/j.actamat.2018.08.003
9
NIKITIN S A , MYALIKGULYEV G , ANNAORAZOV M P , et al. Giant elastocaloric effect in FeRh alloy[J]. Physics Letters A, 1992, 171 (3/4): 234- 236.
10
XIAO F , FUKUDA T , KAKESHITA T . Significant elastocaloric effect in a Fe-31.2Pd (at.%) single crystal[J]. Applied Physics Letters, 2013, 102, 161914.
doi: 10.1063/1.4803168
11
XIAO F , FUKUDA T , KAKESHITA T . Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy[J]. Acta Materialia, 2015, 87, 8- 14.
doi: 10.1016/j.actamat.2015.01.004
12
LU B F , XIAO F , YAN A , et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy[J]. Applied Physics Letters, 2014, 105, 161905.
doi: 10.1063/1.4899147
13
XU Y , LU B F , SUN W , et al. Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27superelastic alloys[J]. Applied Physics Letters, 2015, 106, 201903.
doi: 10.1063/1.4921531
14
YANG Z , CONG D Y , HUANG L , et al. Large elastocaloric effect in a Ni-Co-Mn-Sn magnetic shape memory alloy[J]. Materials & Design, 2016, 92, 932- 936.
15
FRANCO V , BLÁZQUEZ J S , LNGALE B , et al. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models[J]. Annual Review of Materials Research, 2012, 42, 305- 342.
doi: 10.1146/annurev-matsci-062910-100356
16
SMITH A , BAHL C R H , BJØRK R , et al. Materials challenges for high performance magnetocaloric refrigeration devices[J]. Advanced Energy Materials, 2012, 2 (11): 1288- 1318.
doi: 10.1002/aenm.201200167
17
VALANT M . Electrocaloric materials for future solid-state refrigeration technologies[J]. Progress in Materials Science, 2012, 57, 980- 1009.
doi: 10.1016/j.pmatsci.2012.02.001
18
MAÑOSA L , PLANES A . Materials with giant mechanocaloric effects: cooling by strength[J]. Advanced Materials, 2017, 29 (11): 1603607.
doi: 10.1002/adma.201603607
19
CAZORLAR C . Novel mechanocaloric materials for solid-state cooling applications[J]. Applied Physics Review, 2019, 6 (4): 041316.
doi: 10.1063/1.5113620
20
BUEHLER W J , GILFRICH J V , WILEY R C . Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34, 1475.
doi: 10.1063/1.1729603
21
ZHANG Y H , MOUMNI Z , ZHU J H , et al. Effect of the amplitude of the training stress on the fatigue lifetime of NiTi shape memory alloys[J]. Scripta Materialia, 2018, 149, 66- 69.
doi: 10.1016/j.scriptamat.2018.02.012
22
NEMAT-NASSER S , GUO W G . Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures[J]. Mechanics of Materials, 2006, 38 (5/6): 463- 474.
23
赵连城, 蔡伟, 郑玉峰. 合金的记忆效应与超弹性[M]. 北京: 国防工业出版社, 2002.
23
ZHAO L C , CAI W , ZHENG Y F . Shape memory effect and superelasticity in alloys[M]. Beijing: National Defense Industry Press, 2002.
24
WANG X B , VERLINDEN B , VAN HUMBEEK J . R-phase transformation in NiTi alloys[J]. Materials Science and Technology, 2014, 30 (13): 1517- 1529.
doi: 10.1179/1743284714Y.0000000590
25
TUŠEK J , ENGELBRECHT K , MILLÁN-SOLSONA R , et al. The elastocaloric effect: a way to cool efficiently[J]. Advanced Energy Materials, 2015, 5 (13): 1500361.
doi: 10.1002/aenm.201500361
26
SOTO-PARRA D , VIVES E , MAÑOSA L , et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔B19' and B2↔R structural transitions[J]. Applied Physics Letters, 2016, 108, 071902.
doi: 10.1063/1.4942009
27
SCHMIDT M , SCHÜTZE A , SEELECKE S . Elastocaloric cooling processes: the influence of material strain and strain rate on efficiency and temperature span[J]. APL Materials, 2016, 4, 064107.
doi: 10.1063/1.4953433
28
PATAKY GARRETT J , ERTEKIN E , SEHITOGLU H . Elastocaloric cooling potential of NiTi, Ni2FeGa and CoNiAl[J]. Acta Materialia, 2015, 96, 420- 427.
doi: 10.1016/j.actamat.2015.06.011
29
WU Y , ERTEKIN E , SEHITOGLU H . Elastocaloric cooling capacity of shape memory alloys-role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation[J]. Acta Materialia, 2017, 135, 158- 176.
doi: 10.1016/j.actamat.2017.06.012
30
QIAN S X , GENG Y L , WANG Y , et al. A review of elastocaloric cooling: materials, cycles and system integrations[J]. International Journal of Refrigeration, 2016, 64, 1- 19.
doi: 10.1016/j.ijrefrig.2015.12.001
31
PIECZYSKA E A , TOBUSHI H , KULASINSKI K . Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera[J]. Smart Materials and Structures, 2013, 22, 035007.
doi: 10.1088/0964-1726/22/3/035007
32
VIVES E , BURROWS S , EDWARDS R S , et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal[J]. Applied Physics Letters, 2011, 98, 011902.
doi: 10.1063/1.3533403
33
OSSMER H , LAMBRECHT F , GÜLTIG M , et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling[J]. Acta Materialia, 2014, 81, 9- 20.
doi: 10.1016/j.actamat.2014.08.006
34
OSSMER H , CHLUBA C , GÜLTIG M , et al. Local evolution of the elastocaloric effect in TiNi-based films[J]. Shape Memory Superelasticity, 2015, 1, 142- 152.
doi: 10.1007/s40830-015-0014-3
35
OSSMER H , MIYAZAKI S , KOHL M . The elastocaloric effect in TiNi-based foils[J]. Materials Today: Proceedings, 2015, 2S, S971- S974.
36
DELVILLE R , MALARD B , PILCH J , et al. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires[J]. International Journal of Plasticity, 2011, 27, 282- 297.
doi: 10.1016/j.ijplas.2010.05.005
37
ENGELBRECHT K , TUŠEK J , SANNA S , et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling[J]. APL Materials, 2016, 4, 064110.
doi: 10.1063/1.4955131
38
TUŠEK J , ENGELBRECHT K , MIKKELSEN L P , et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device[J]. Journal of Applied Physics, 2015, 117, 124901.
doi: 10.1063/1.4913878
39
ZHANG X X , QIAN M F , ZHU X J , et al. Elastocaloric effects in ultra-fine grained NiTi microwires processed by cold-drawing[J]. APL Materials, 2018, 6, 036102.
doi: 10.1063/1.5021631
40
ZHOU M , LI Y S , ZHANG C , et al. The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys[J]. Journal of Physics D: Applied Physics, 2018, 51, 135303.
doi: 10.1088/1361-6463/aaafc2
41
BECHTOLD C , CHLUBA C , LIMA DE MIRANDA R , et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films[J]. Applied Physics Letters, 2012, 101, 091903.
doi: 10.1063/1.4748307
42
TUŠEK J , ŽEROVNIK A , EBRON M , et al. Elastocaloric effect vs fatigue life: exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling[J]. Acta Materialia, 2018, 150, 295- 307.
doi: 10.1016/j.actamat.2018.03.032
43
FULANOVIC' L , KORUZA J , NOVAK N , et al. Fatigue-less electrocaloric effect in relaxor Pb(Mg1/3Nb2/3)O3 multilayer elements[J]. Journal of the European Ceramic Society, 2017, 37 (15): 5105- 5108.
doi: 10.1016/j.jeurceramsoc.2017.06.011
44
KITANOVSKI A, TUSEK J, TOMC U, et al. Magnetocaloric energy conversion: from theory to applications[M]//Magnetocaloric Energy Conversion: From Theory to Applications. Switerland: Springer International Publishing, 2015.
45
LIANG X , XIAO F , JIN M J , et al. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8 Ni (at.%) alloy[J]. Scripta Materialia, 2017, 134, 42- 46.
doi: 10.1016/j.scriptamat.2017.02.026
46
ZHU X J , ZHANG X X , QIAN M F . Reversible elastocaloric effects with small hysteresis in nanocrystalline Ni-Ti microwires[J]. AIP Advances, 2018, 8 (12): 125002.
doi: 10.1063/1.5051760
47
CHEN H , XIAO F , LIANG X , et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement[J]. Scripta Materialia, 2019, 162, 230- 234.
doi: 10.1016/j.scriptamat.2018.11.024
48
TANG Z , WANG Y , LIAO X Q , et al. Stress dependent transforming behaviors and associated functional properties of a nano-precipitates induced strain glass alloy[J]. Journal of Alloys and Compounds, 2015, 622, 622- 627.
doi: 10.1016/j.jallcom.2014.10.142
49
FRENZEL J , EGGELER G , QUANDT E , et al. High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices[J]. MRS Bulletin, 2018, 43 (4): 280- 284.
doi: 10.1557/mrs.2018.67
50
FRENZEL J , WIECZOREK A , OPAHLE I , et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys[J]. Acta Materialia, 2015, 90, 213- 231.
doi: 10.1016/j.actamat.2015.02.029
51
NⅡTSU K , KIMURA Y , XU X , et al. Composition dependences of entropy change and transformation temperatures in Ni-rich Ti-Ni system[J]. Shape Memory and Superelasticity, 2015, 1, 124- 131.
doi: 10.1007/s40830-015-0023-2
52
KIM Y , JO M , PARK J , et al. Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7shape memory alloy[J]. Scripta Materialia, 2018, 144, 48- 51.
doi: 10.1016/j.scriptamat.2017.09.048
53
SCHMIDT M , ULLRICH J , WIECZOREK A , et al. Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training[J]. Shape Memory and Superelasticity, 2015, 1, 132- 141.
doi: 10.1007/s40830-015-0021-4
54
ZARNETTA R , TAKAHASHI R , YOUNG M L , et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability[J]. Advanced Functional Materials, 2010, 20, 1917- 1923.
doi: 10.1002/adfm.200902336
55
CHLUBA C , OSSMER H , ZAMPONI C , et al. Ultra-low fatigue quaternary TiNi-based films for elastocaloric cooling[J]. Shape Memory and Superelasticity, 2016, 2, 95- 103.
doi: 10.1007/s40830-016-0054-3
56
OSSMER H , CHLUBA C , KAUFFMANN-WEISS S , et al. TiNi-based films for elastocaloric microcooling - fatigue life and device performance[J]. APL Materials, 2016, 4, 064102.
doi: 10.1063/1.4948271
57
WELSCH F , ULLRICH J , OSSMER H . Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films[J]. Continuum Mechanics and Thermodynamics, 2018, 30 (1): 53- 68.
doi: 10.1007/s00161-017-0582-x
58
WENDLER F , OSSMER H , CHLUBA C , et al. Mesoscale simulation of elastocaloric cooling in SMA films[J]. Acta Materialia, 2017, 136, 105- 117.
doi: 10.1016/j.actamat.2017.06.044
59
AALTIO I , FUKUDA T , KAKESHITA T . Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4 at% Fe content[J]. Journal of Alloys and Compounds, 2019, 780, 930- 936.
doi: 10.1016/j.jallcom.2018.11.406
60
HOU H L , SIMSEK E , STASAK D , et al. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat[J]. Journal of Physics D: Applied Physics, 2017, 50404001.
61
HOU H L , SIMEK E , MA T , et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing[J]. Science, 2019, 366 (6469): 1116- 1121.
doi: 10.1126/science.aax7616
62
XIAO F , FUKUDA T , KAKESHITA T . Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4[J]. Scripta Materialia, 2016, 124, 133- 137.
doi: 10.1016/j.scriptamat.2016.07.016
63
XIAO F , LIANG X , CHEN H , et al. Orientation dependence of elastocaloric effect in an aged Ni-rich Ti-Ni alloy[J]. Scripta Materialia, 2019, 168, 86- 90.
doi: 10.1016/j.scriptamat.2019.04.030
64
WAN X M , FENG Y , XIN X X , et al. Large superelastic recovery and elastocaloric effect in as-deposited additive manufactured Ni50.8Ti49.2 alloy[J]. Applied Physics Letters, 2019, 114, 221903.
doi: 10.1063/1.5098371
65
AHADI A , KAWASAKI T , HARJO S , et al. Elastocaloric effect at ultra-low temperatures in nanocrystalline shape memory alloys[J]. Acta Materialia, 2019, 165, 109- 117.
doi: 10.1016/j.actamat.2018.11.035
66
NⅡTSU K , KIMURA Y , OMORI T , et al. Cryogenic superelasticity with large elastocaloric effect[J]. NPG Asia Materials, 2018, 10 (1): 457.
doi: 10.1038/am.2017.213
67
SAYLOR A. 2012 ARPA-E summit technology showcase[EB/OL]. (2012-02-28)[2017-02-01]. http://www.nergy.gov/articles/2012-arpa-e-summit-technology-showcase.
68
HOU H L , CUI J , QIAN S X , et al. Overcoming fatigue through compression for advanced elastocaloric cooling[J]. MRS Bulletin, 2018, 43 (4): 285- 290.
doi: 10.1557/mrs.2018.70
69
QIAN S X, WANG Y, GENG Y L, et al. Experimental evaluation of a compressive elastocaloric cooling system[C]//16th International Refrigeration and Air Conditioning Conforence. Purdue, America: Purdue University, 2016.
70
QIAN S X , GENG Y I , WANG Y , et al. Design of a hydraulically driven compressive elastocaloric cooling system[J]. Science and Technology for the Built Environment, 2016, 22, 500- 506.
doi: 10.1080/23744731.2016.1171630
71
SCHMIDT M , SCHÜTZE A , SEELECKE S . Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J]. International Journal of Refrigeration, 2015, 54, 88- 97.
doi: 10.1016/j.ijrefrig.2015.03.001
72
OSSMER H, MIYAZAKI S, KOHL M. Elastocaloric heat pumping using a shape memory alloy foil device[C]//TRANSDUCERS-2015 18th International Conference on Solid-state Sensors, Actuators and Microsystem. New York: IEEE, 2015: 726-729.
73
OSSMER H , WENDLER F , GUELTIG M , et al. Energy-efficient miniature-scale heat pumping based on shape memory alloys[J]. Smart Materials and Structures, 2016, 25, 085037.
doi: 10.1088/0964-1726/25/8/085037
74
BRUEDERLIN F , OSSMER H , WENDLER F , et al. SMA foil-based elastocaloric cooling: from material behavior to device engineering[J]. Journal of Physics D: Applied Physics, 2017, 50, 424003.
doi: 10.1088/1361-6463/aa87a2
75
BRUEDERLIN F , BUMKE L , CHLUBA C , et al. Elastocaloric cooling on the miniature scale: a review on materials and device engineering[J]. Energy Technology, 2018, 6, 1588- 1604.
doi: 10.1002/ente.201800137
76
TUŠEK J , ENGELBRECHT K , ERIKSEN D , et al. A regenerative elastocaloric heat pump[J]. Nature Energy, 2016, 1, 16134.
doi: 10.1038/nenergy.2016.134
77
ENGELBRECHT K , TUŠEK J , ERIKSEN D , et al. A regenerative elastocaloric device: experimental results[J]. Journal of Physics D: Applied Physics, 2017, 50, 424006.
doi: 10.1088/1361-6463/aa8656
78
KIRSCH S M , WELSCH F , MICHAELIS N , et al. NiTi-based elastocaloric cooling on the macroscale-from basic concepts to realization[J]. Energy Technology, 2018, 6 (8): 1567- 1587.
doi: 10.1002/ente.201800152