Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 1-13    DOI: 10.11868/j.issn.1001-4381.2020.000780
  记忆合金专栏 本期目录 | 过刊浏览 | 高级检索 |
NiTi基形状记忆合金弹热效应及其应用研究进展
朱雪洁1, 钟诗江1, 杨晓霞2, 张学习1,*(), 钱明芳1, 耿林1
1 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
2 山东大学 材料科学与工程学院, 济南 250014
Research progress in elastocaloric effect and its application of NiTi-based shape memory alloys
Xue-jie ZHU1, Shi-jiang ZHONG1, Xiao-xia YANG2, Xue-xi ZHANG1,*(), Ming-fang QIAN1, Lin GENG1
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 School of Materials Science and Engineering, Shandong University, Jinan 250014, China
全文: PDF(7403 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

NiTi合金作为性能最优异的形状记忆合金之一,已经广泛应用于航空航天、电子、建筑、生物医学等领域。近年来,NiTi基合金极佳的力学性能、巨大的弹热效应和良好的机械加工性使其在弹热制冷领域引起了广泛关注。然而,传统NiTi二元合金超弹性应力滞后大,超弹性和弹热效应循环稳定性差,达不到实际应用所需的长期服役要求。本文介绍了NiTi基合金的弹热效应研究进展,从掺杂合金元素、热机械处理、改变制备方法等角度综述了近几年NiTi基合金弹热效应改进优化的研究进展,同时本文也简要介绍了已经开发的基于NiTi基合金的弹热装置或原型机。但是目前NiTi基合金弹热材料的研究和原型机的开发仍处于实验阶段,实现其商业化应用需要进一步深入研究和优化,未来前者研究重点将集中在材料小型化、合金化或特殊处理及改变循环方式等方面,后者也将从提高热量传输效率、加强热量交换、减小摩擦等损耗、改进机械负载和循环模式等方面不断优化和完善。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱雪洁
钟诗江
杨晓霞
张学习
钱明芳
耿林
关键词 NiTi基合金弹热效应固体制冷R相变超弹性循环稳定性    
Abstract

NiTi-based shape memory alloys (SMAs) are one of the SMAs with most outstanding properties, and have been widely applied in aviation, space, electronics, construction, biomedicine and other fields. In recent years, the elastocaloric refrigeration based on elastocaloric effect (eCE) of NiTi alloys has attracted increasing attentions since their excellent mechanical properties, huge elastocaloric strength and good machinability. However, conventional binary NiTi alloys cannot meet the requirements of long-life service since their large superelastic stress hysteresis and poor cyclic stability of superelasticity and eCE. In this paper, the research progress of eCE for NiTi-based alloys was reviewed. The effect of doping alloying element, thermomechanical treatment and novel processing techniques on eCE of NiTi-based alloys were surnmarized. In addition, the developed elastocaloric devices or prototypes based on NiTi-based alloys were also briefly introduced. However, the current researches on NiTi-based elastocaloric materials and the development of prototypes are still in the experimental stage. To realize their commercial application requires further in-depth research and optimization. In the future, the research priorities for the former will concentrate on material miniaturization, alloying or applying special treatment as well as changing circulation methods and so on. On the other hand, the research priorities for the latter will focus on improving heat transfer efficiency, strengthening heat exchange, reducing friction and other losses, and improving mechanical loadings as well as circulation modes.

Key wordsNiTi-based alloys    elastocaloric effect (eCE)    solid-state refrigeration    R phase transition    superelasticity    cycling stability
收稿日期: 2020-08-19      出版日期: 2021-03-20
中图分类号:  TG139+6  
基金资助:国家自然科学基金项目(51701052)
通讯作者: 张学习     E-mail: xxzhang@hit.edu.cn
作者简介: 张学习(1975-), 男, 教授, 博士, 研究方向: 形状记忆合金磁热及弹热性能研究, 联系地址: 黑龙江省哈尔滨市西大直街92号哈尔滨工业大学材料科学与工程学院(150001), E-mail: xxzhang@hit.edu.cn
引用本文:   
朱雪洁, 钟诗江, 杨晓霞, 张学习, 钱明芳, 耿林. NiTi基形状记忆合金弹热效应及其应用研究进展[J]. 材料工程, 2021, 49(3): 1-13.
Xue-jie ZHU, Shi-jiang ZHONG, Xiao-xia YANG, Xue-xi ZHANG, Ming-fang QIAN, Lin GENG. Research progress in elastocaloric effect and its application of NiTi-based shape memory alloys. Journal of Materials Engineering, 2021, 49(3): 1-13.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000780      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/1
Fig.1  形状记忆合金弹热效应示意图[25]
Fig.2  Ni50.4Ti49.6合金薄膜在0.02 s-1应变速率变形过程中的温度和应变分布图以及超弹性曲线[33]  (a)加载过程温度和应变分布(数字对应于(b)图);(b)包括加载图像采集点的应力-应变曲线;(c)卸载过程温度和应变分布(数字对应于(d)图);(d)包括卸载图像采集点的应力-应变曲线
Fig.3  Ni50.9Ti49.1合金薄板的弹热性能[42]   (a)不同循环条件下的疲劳寿命;(b)不同机械循环条件下的绝热温变;(c)6%预应变、1%应变振幅下循环应力-应变曲线;(d)10%预应变、1%应变振幅下循环应力-应变曲线
Fig.4  纳米沉淀相诱发的应变玻璃转变Ni51.3Ti48.7合金等温熵变随温度变化曲线(插图为应变玻璃转变时产生的等温熵变峰)[48]
Fig.5  纳米晶Ti50Ni44Cu5Al1合金不同循环次数的绝热温变值[8]
Fig.6  Ti52.6Ni47.4合金不同应力下B19′相变和R相变最大可逆熵[26]
Material ρ/(kg·m-3) c/(J·kg-1·K-1) Ms/K ε/% ΔSt/(J·kg-1·K-1) (dT/dσ)/(K·MPa-1) Δσ/MPa ΔSiso/(J·kg-1·K-1) ΔTadi/K Ref
Cu68.1Zn15.8Al16.1(SC) 7710 432 234 8 23.7 0.50 143 20.7 [3]
Cu68Zn16Al16(bulk) 7710 430 205 7.1 17.9 0.51 250 -6— -7 [4]
Cu71.5Al17.5Mn11(bulk) 7400 455 239 9 25 0.54 200 -12.8 [5]
Fe49Rh51(bulk) 9800 470 316 0.3 13 -0.02 529 -5.7 [9]
Fe68.8Pd31.2(SC)a 8900 400 250 2 1 200 -3 [10]
Ni45.7Mn36.6In13.3Co5.1(bulk) 8100 462 284 1 21 100 +3.5/-2.5 [12]
Ni54Fe19Ga27(bulk) 8450 470 280 2.2 10.5 130 -5 [13]
Ni43.5Co6.5Mn39Sn11(bulk) 8065 500 260 4 13.5 0.21 310 11.1 [14]
Ni50.8Ti49.2(bulk)a 6500 424 222 4 63 0.11 700 37 +18/-11 [40]
Ni51.3Ti48.7(bulk)a 6500 550 220 8 300 26 [48]
Ni50Ti45.3V4.7(bulk)a 6500 510 278 4.3 32 300 -12 [52]
Ni45Ti47.25Cu5V2.75(bulk)a 6500 460 295 5 -18.4 [27]
Ti50Ni44Cu5Al1(bulk)b 6500 550 300 4.9 33.7 0.19 500 37.5 -17.4 [8]
Ti50Ni48Fe2(bulk)c 6500 480 283 0.5 21 0.04 200 -2.7 [59]
Ni50Ti50(wire)a 6500 550 8.5 40 500 +25.5/-17 [6]
Ni47.4Ti52.6(wire)a 6500 550 303 7 60-80 0.2 175 60-70 [26]
Ni50.5Ti49.5(wire)a 6500 550 210 6 0.16 700 65 [7]
Ni48.9Ti51.1(wire)a 6500 450 295 6 0.13 700 35 +25/-21 [38]
Ni50.4Ti49.6(wire)a 6500 550 6.5 0.18 750 43 [39]
Ni47.4Ti52.6(wire)c 6500 550 310 0.5 17.8 0.05 160 13 [26]
Ni50.5Ti49.5(wire)c 6500 550 318 0.6 23.4 0.05 340 21 [46]
Ni50.8Ti49.2(wire)c 6500 470 319 0.7 12.2 300 -2 [45]
Ni50.4Ti49.6(film)a 6500 550 7.5 400 9 [41]
Ni50.4Ti49.6(film)a 6500 450 250 5.3 76 0.11 500 +17/-16 [33]
Ti54.9Ni32.5Cu12.6(film)b 6500 837 318 1.7 52 380 +4.1/-6.1 [41]
Ti54.7Ni30.6Cu12.3Co2.4(film)b 6500 420 263 1.8 0.10 450 40 -12 [34]
Ni50.5Ti49.5(foil)a 6500 550 281 8 35 1300 +58 [31]
Ti50.5Ni49.1Fe0.4(foil)a 6500 500 4.2 80 520 +22/-17 [35]
Ni50.8Ti49.2(sheet)a 6500 550 314 5 37 0.17 700 -24 [47]
Ni50.4Ti49.6(SC)a 6500 590 218 0.12 500 51 -14.2 [28]
Ni50.8Ti49.2(SC)a 7600 590 218 6.2 51.7 0.14 450 -18.2 [29]
Ni50.8Ti49.2(AM)a 6500 550 280 9.2 1400 -18.6 [60]
Ni46.6Ti53.4(AM)d 6500 550 334 5 45 1200 +9.5/-7.5 [61]
Table 1  形状记忆合金的弹热效应
Fig.7  激光定向能量沉积(L-DED)技术制备的Ni51.5Ti48.5/Ni3Ti纳米复合材料106次机械循环前后超弹性和弹热性能[64]  (a)压缩应力-应变曲线;(b)绝热温变;(c)不同材料的等温和绝热加卸载过程滞后环面积和COPmaterials/COPcarnot
Fig.8  基于Ti50.5Ni49.1Fe0.4合金桥的热泵结构原理图(a)单桥结构;(b)双桥结构[72];(c)改良后的凸双桥结构;(d)改良后的凹双桥结构[73]
1 MOYA X , KAR-NARAYAN S , MATHUR N D . Caloric materials near ferroic phase transitions[J]. Nature Materials, 2014, 13, 439- 450.
doi: 10.1038/nmat3951
2 GOETZLER W, ZOGG R, YOUNG J, et al. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies[R]. United States: EERE Publication and Product Library, 2014.
3 BONNOT E , ROMERO R , MAÑOA L , et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 2008, 100 (12): 125901.
doi: 10.1103/PhysRevLett.100.125901
4 MANOSA L , JARQUE-FARNOS S , VIVES E , et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys[J]. Applied Physics Letters, 2013, 103, 211904.
doi: 10.1063/1.4832339
5 XU S , HUANG H Y , XIE J X , et al. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11shape memory alloy[J]. APL Materials, 2016, 4, 106106.
doi: 10.1063/1.4964621
6 CUI J , WU Y M , MUEHLBAUER J , et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires[J]. Applied Physics Letters, 2012, 101, 073904.
doi: 10.1063/1.4746257
7 ZHU X J , ZHANG X X , QIAN M F , et al. Elastocaloric effects related to B2↔R and B2↔B19' martensite transformations in nanocrystalline Ni50.5Ti49.5 microwires[J]. Journal of Alloys and Compouds, 2019, 792, 780- 788.
doi: 10.1016/j.jallcom.2019.04.087
8 CHEN H , XIAO F , LIANG X , et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44 Ni-5Cu-1Al (at%) alloy[J]. Acta Materialia, 2018, 158, 330- 339.
doi: 10.1016/j.actamat.2018.08.003
9 NIKITIN S A , MYALIKGULYEV G , ANNAORAZOV M P , et al. Giant elastocaloric effect in FeRh alloy[J]. Physics Letters A, 1992, 171 (3/4): 234- 236.
10 XIAO F , FUKUDA T , KAKESHITA T . Significant elastocaloric effect in a Fe-31.2Pd (at.%) single crystal[J]. Applied Physics Letters, 2013, 102, 161914.
doi: 10.1063/1.4803168
11 XIAO F , FUKUDA T , KAKESHITA T . Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy[J]. Acta Materialia, 2015, 87, 8- 14.
doi: 10.1016/j.actamat.2015.01.004
12 LU B F , XIAO F , YAN A , et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy[J]. Applied Physics Letters, 2014, 105, 161905.
doi: 10.1063/1.4899147
13 XU Y , LU B F , SUN W , et al. Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27superelastic alloys[J]. Applied Physics Letters, 2015, 106, 201903.
doi: 10.1063/1.4921531
14 YANG Z , CONG D Y , HUANG L , et al. Large elastocaloric effect in a Ni-Co-Mn-Sn magnetic shape memory alloy[J]. Materials & Design, 2016, 92, 932- 936.
15 FRANCO V , BLÁZQUEZ J S , LNGALE B , et al. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models[J]. Annual Review of Materials Research, 2012, 42, 305- 342.
doi: 10.1146/annurev-matsci-062910-100356
16 SMITH A , BAHL C R H , BJØRK R , et al. Materials challenges for high performance magnetocaloric refrigeration devices[J]. Advanced Energy Materials, 2012, 2 (11): 1288- 1318.
doi: 10.1002/aenm.201200167
17 VALANT M . Electrocaloric materials for future solid-state refrigeration technologies[J]. Progress in Materials Science, 2012, 57, 980- 1009.
doi: 10.1016/j.pmatsci.2012.02.001
18 MAÑOSA L , PLANES A . Materials with giant mechanocaloric effects: cooling by strength[J]. Advanced Materials, 2017, 29 (11): 1603607.
doi: 10.1002/adma.201603607
19 CAZORLAR C . Novel mechanocaloric materials for solid-state cooling applications[J]. Applied Physics Review, 2019, 6 (4): 041316.
doi: 10.1063/1.5113620
20 BUEHLER W J , GILFRICH J V , WILEY R C . Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34, 1475.
doi: 10.1063/1.1729603
21 ZHANG Y H , MOUMNI Z , ZHU J H , et al. Effect of the amplitude of the training stress on the fatigue lifetime of NiTi shape memory alloys[J]. Scripta Materialia, 2018, 149, 66- 69.
doi: 10.1016/j.scriptamat.2018.02.012
22 NEMAT-NASSER S , GUO W G . Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures[J]. Mechanics of Materials, 2006, 38 (5/6): 463- 474.
23 赵连城, 蔡伟, 郑玉峰. 合金的记忆效应与超弹性[M]. 北京: 国防工业出版社, 2002.
23 ZHAO L C , CAI W , ZHENG Y F . Shape memory effect and superelasticity in alloys[M]. Beijing: National Defense Industry Press, 2002.
24 WANG X B , VERLINDEN B , VAN HUMBEEK J . R-phase transformation in NiTi alloys[J]. Materials Science and Technology, 2014, 30 (13): 1517- 1529.
doi: 10.1179/1743284714Y.0000000590
25 TUŠEK J , ENGELBRECHT K , MILLÁN-SOLSONA R , et al. The elastocaloric effect: a way to cool efficiently[J]. Advanced Energy Materials, 2015, 5 (13): 1500361.
doi: 10.1002/aenm.201500361
26 SOTO-PARRA D , VIVES E , MAÑOSA L , et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔B19' and B2↔R structural transitions[J]. Applied Physics Letters, 2016, 108, 071902.
doi: 10.1063/1.4942009
27 SCHMIDT M , SCHÜTZE A , SEELECKE S . Elastocaloric cooling processes: the influence of material strain and strain rate on efficiency and temperature span[J]. APL Materials, 2016, 4, 064107.
doi: 10.1063/1.4953433
28 PATAKY GARRETT J , ERTEKIN E , SEHITOGLU H . Elastocaloric cooling potential of NiTi, Ni2FeGa and CoNiAl[J]. Acta Materialia, 2015, 96, 420- 427.
doi: 10.1016/j.actamat.2015.06.011
29 WU Y , ERTEKIN E , SEHITOGLU H . Elastocaloric cooling capacity of shape memory alloys-role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation[J]. Acta Materialia, 2017, 135, 158- 176.
doi: 10.1016/j.actamat.2017.06.012
30 QIAN S X , GENG Y L , WANG Y , et al. A review of elastocaloric cooling: materials, cycles and system integrations[J]. International Journal of Refrigeration, 2016, 64, 1- 19.
doi: 10.1016/j.ijrefrig.2015.12.001
31 PIECZYSKA E A , TOBUSHI H , KULASINSKI K . Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera[J]. Smart Materials and Structures, 2013, 22, 035007.
doi: 10.1088/0964-1726/22/3/035007
32 VIVES E , BURROWS S , EDWARDS R S , et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal[J]. Applied Physics Letters, 2011, 98, 011902.
doi: 10.1063/1.3533403
33 OSSMER H , LAMBRECHT F , GÜLTIG M , et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling[J]. Acta Materialia, 2014, 81, 9- 20.
doi: 10.1016/j.actamat.2014.08.006
34 OSSMER H , CHLUBA C , GÜLTIG M , et al. Local evolution of the elastocaloric effect in TiNi-based films[J]. Shape Memory Superelasticity, 2015, 1, 142- 152.
doi: 10.1007/s40830-015-0014-3
35 OSSMER H , MIYAZAKI S , KOHL M . The elastocaloric effect in TiNi-based foils[J]. Materials Today: Proceedings, 2015, 2S, S971- S974.
36 DELVILLE R , MALARD B , PILCH J , et al. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires[J]. International Journal of Plasticity, 2011, 27, 282- 297.
doi: 10.1016/j.ijplas.2010.05.005
37 ENGELBRECHT K , TUŠEK J , SANNA S , et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling[J]. APL Materials, 2016, 4, 064110.
doi: 10.1063/1.4955131
38 TUŠEK J , ENGELBRECHT K , MIKKELSEN L P , et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device[J]. Journal of Applied Physics, 2015, 117, 124901.
doi: 10.1063/1.4913878
39 ZHANG X X , QIAN M F , ZHU X J , et al. Elastocaloric effects in ultra-fine grained NiTi microwires processed by cold-drawing[J]. APL Materials, 2018, 6, 036102.
doi: 10.1063/1.5021631
40 ZHOU M , LI Y S , ZHANG C , et al. The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys[J]. Journal of Physics D: Applied Physics, 2018, 51, 135303.
doi: 10.1088/1361-6463/aaafc2
41 BECHTOLD C , CHLUBA C , LIMA DE MIRANDA R , et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films[J]. Applied Physics Letters, 2012, 101, 091903.
doi: 10.1063/1.4748307
42 TUŠEK J , ŽEROVNIK A , EBRON M , et al. Elastocaloric effect vs fatigue life: exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling[J]. Acta Materialia, 2018, 150, 295- 307.
doi: 10.1016/j.actamat.2018.03.032
43 FULANOVIC' L , KORUZA J , NOVAK N , et al. Fatigue-less electrocaloric effect in relaxor Pb(Mg1/3Nb2/3)O3 multilayer elements[J]. Journal of the European Ceramic Society, 2017, 37 (15): 5105- 5108.
doi: 10.1016/j.jeurceramsoc.2017.06.011
44 KITANOVSKI A, TUSEK J, TOMC U, et al. Magnetocaloric energy conversion: from theory to applications[M]//Magnetocaloric Energy Conversion: From Theory to Applications. Switerland: Springer International Publishing, 2015.
45 LIANG X , XIAO F , JIN M J , et al. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8 Ni (at.%) alloy[J]. Scripta Materialia, 2017, 134, 42- 46.
doi: 10.1016/j.scriptamat.2017.02.026
46 ZHU X J , ZHANG X X , QIAN M F . Reversible elastocaloric effects with small hysteresis in nanocrystalline Ni-Ti microwires[J]. AIP Advances, 2018, 8 (12): 125002.
doi: 10.1063/1.5051760
47 CHEN H , XIAO F , LIANG X , et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement[J]. Scripta Materialia, 2019, 162, 230- 234.
doi: 10.1016/j.scriptamat.2018.11.024
48 TANG Z , WANG Y , LIAO X Q , et al. Stress dependent transforming behaviors and associated functional properties of a nano-precipitates induced strain glass alloy[J]. Journal of Alloys and Compounds, 2015, 622, 622- 627.
doi: 10.1016/j.jallcom.2014.10.142
49 FRENZEL J , EGGELER G , QUANDT E , et al. High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices[J]. MRS Bulletin, 2018, 43 (4): 280- 284.
doi: 10.1557/mrs.2018.67
50 FRENZEL J , WIECZOREK A , OPAHLE I , et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys[J]. Acta Materialia, 2015, 90, 213- 231.
doi: 10.1016/j.actamat.2015.02.029
51 NⅡTSU K , KIMURA Y , XU X , et al. Composition dependences of entropy change and transformation temperatures in Ni-rich Ti-Ni system[J]. Shape Memory and Superelasticity, 2015, 1, 124- 131.
doi: 10.1007/s40830-015-0023-2
52 KIM Y , JO M , PARK J , et al. Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7shape memory alloy[J]. Scripta Materialia, 2018, 144, 48- 51.
doi: 10.1016/j.scriptamat.2017.09.048
53 SCHMIDT M , ULLRICH J , WIECZOREK A , et al. Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training[J]. Shape Memory and Superelasticity, 2015, 1, 132- 141.
doi: 10.1007/s40830-015-0021-4
54 ZARNETTA R , TAKAHASHI R , YOUNG M L , et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability[J]. Advanced Functional Materials, 2010, 20, 1917- 1923.
doi: 10.1002/adfm.200902336
55 CHLUBA C , OSSMER H , ZAMPONI C , et al. Ultra-low fatigue quaternary TiNi-based films for elastocaloric cooling[J]. Shape Memory and Superelasticity, 2016, 2, 95- 103.
doi: 10.1007/s40830-016-0054-3
56 OSSMER H , CHLUBA C , KAUFFMANN-WEISS S , et al. TiNi-based films for elastocaloric microcooling - fatigue life and device performance[J]. APL Materials, 2016, 4, 064102.
doi: 10.1063/1.4948271
57 WELSCH F , ULLRICH J , OSSMER H . Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films[J]. Continuum Mechanics and Thermodynamics, 2018, 30 (1): 53- 68.
doi: 10.1007/s00161-017-0582-x
58 WENDLER F , OSSMER H , CHLUBA C , et al. Mesoscale simulation of elastocaloric cooling in SMA films[J]. Acta Materialia, 2017, 136, 105- 117.
doi: 10.1016/j.actamat.2017.06.044
59 AALTIO I , FUKUDA T , KAKESHITA T . Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4 at% Fe content[J]. Journal of Alloys and Compounds, 2019, 780, 930- 936.
doi: 10.1016/j.jallcom.2018.11.406
60 HOU H L , SIMSEK E , STASAK D , et al. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat[J]. Journal of Physics D: Applied Physics, 2017, 50404001.
61 HOU H L , SIMEK E , MA T , et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing[J]. Science, 2019, 366 (6469): 1116- 1121.
doi: 10.1126/science.aax7616
62 XIAO F , FUKUDA T , KAKESHITA T . Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4[J]. Scripta Materialia, 2016, 124, 133- 137.
doi: 10.1016/j.scriptamat.2016.07.016
63 XIAO F , LIANG X , CHEN H , et al. Orientation dependence of elastocaloric effect in an aged Ni-rich Ti-Ni alloy[J]. Scripta Materialia, 2019, 168, 86- 90.
doi: 10.1016/j.scriptamat.2019.04.030
64 WAN X M , FENG Y , XIN X X , et al. Large superelastic recovery and elastocaloric effect in as-deposited additive manufactured Ni50.8Ti49.2 alloy[J]. Applied Physics Letters, 2019, 114, 221903.
doi: 10.1063/1.5098371
65 AHADI A , KAWASAKI T , HARJO S , et al. Elastocaloric effect at ultra-low temperatures in nanocrystalline shape memory alloys[J]. Acta Materialia, 2019, 165, 109- 117.
doi: 10.1016/j.actamat.2018.11.035
66 NⅡTSU K , KIMURA Y , OMORI T , et al. Cryogenic superelasticity with large elastocaloric effect[J]. NPG Asia Materials, 2018, 10 (1): 457.
doi: 10.1038/am.2017.213
67 SAYLOR A. 2012 ARPA-E summit technology showcase[EB/OL]. (2012-02-28)[2017-02-01]. http://www.nergy.gov/articles/2012-arpa-e-summit-technology-showcase.
68 HOU H L , CUI J , QIAN S X , et al. Overcoming fatigue through compression for advanced elastocaloric cooling[J]. MRS Bulletin, 2018, 43 (4): 285- 290.
doi: 10.1557/mrs.2018.70
69 QIAN S X, WANG Y, GENG Y L, et al. Experimental evaluation of a compressive elastocaloric cooling system[C]//16th International Refrigeration and Air Conditioning Conforence. Purdue, America: Purdue University, 2016.
70 QIAN S X , GENG Y I , WANG Y , et al. Design of a hydraulically driven compressive elastocaloric cooling system[J]. Science and Technology for the Built Environment, 2016, 22, 500- 506.
doi: 10.1080/23744731.2016.1171630
71 SCHMIDT M , SCHÜTZE A , SEELECKE S . Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J]. International Journal of Refrigeration, 2015, 54, 88- 97.
doi: 10.1016/j.ijrefrig.2015.03.001
72 OSSMER H, MIYAZAKI S, KOHL M. Elastocaloric heat pumping using a shape memory alloy foil device[C]//TRANSDUCERS-2015 18th International Conference on Solid-state Sensors, Actuators and Microsystem. New York: IEEE, 2015: 726-729.
73 OSSMER H , WENDLER F , GUELTIG M , et al. Energy-efficient miniature-scale heat pumping based on shape memory alloys[J]. Smart Materials and Structures, 2016, 25, 085037.
doi: 10.1088/0964-1726/25/8/085037
74 BRUEDERLIN F , OSSMER H , WENDLER F , et al. SMA foil-based elastocaloric cooling: from material behavior to device engineering[J]. Journal of Physics D: Applied Physics, 2017, 50, 424003.
doi: 10.1088/1361-6463/aa87a2
75 BRUEDERLIN F , BUMKE L , CHLUBA C , et al. Elastocaloric cooling on the miniature scale: a review on materials and device engineering[J]. Energy Technology, 2018, 6, 1588- 1604.
doi: 10.1002/ente.201800137
76 TUŠEK J , ENGELBRECHT K , ERIKSEN D , et al. A regenerative elastocaloric heat pump[J]. Nature Energy, 2016, 1, 16134.
doi: 10.1038/nenergy.2016.134
77 ENGELBRECHT K , TUŠEK J , ERIKSEN D , et al. A regenerative elastocaloric device: experimental results[J]. Journal of Physics D: Applied Physics, 2017, 50, 424006.
doi: 10.1088/1361-6463/aa8656
78 KIRSCH S M , WELSCH F , MICHAELIS N , et al. NiTi-based elastocaloric cooling on the macroscale-from basic concepts to realization[J]. Energy Technology, 2018, 6 (8): 1567- 1587.
doi: 10.1002/ente.201800152
[1] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[2] 赵家祥, 李建, 梁志鸿, 邱博, 阚前华. 超弹性NiTi合金率相关相变图案演化模拟[J]. 材料工程, 2021, 49(4): 102-110.
[3] 衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
[4] 黄学文, 董光能, 周仲荣, 谢友柏. TiNi合金的耐磨机制及其摩擦学应用研究[J]. 材料工程, 2004, 0(6): 41-44,48.
[5] 高万夫, 崔立山, 李岩, 赵新清. 超弹性NiTi记忆合金平台应力在约束加热过程中的变化[J]. 材料工程, 2002, 0(4): 30-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn