Ni-Mn-based magnetic shape memory alloys have excellent shape memory effects induced by the temperature field and magnetic field, superelasticity, magnetocaloric effect, magnetoresistive effect, elastocaloric effect, exchange bias effect, etc. As a new type of multi-functional material, it is expected to be used in many engineering fields such as actuators, sensors and so on. The research status of Ni-Mn-based magnetic shape memory alloys containing the second phase was described in detail. The formation of the second phase and its influence on martensitic transformation, functional performance and mechanical properties were summarized. Several important and unresolved issues currently were presented, such as the impact of the second phase on magnetic functional properties including magnetic shape memory effect. It was pointed out that in future work, it is essential to study the thermodynamic and kinetic factors of the formation and evolution of the second phase, and properly regulate the second phase so as to optimize the functional properties of the alloys.
陈枫, 刘佩文, 许贤福, 田兵, 佟运祥, 李莉. Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响[J]. 材料工程, 2021, 49(3): 20-30.
Feng CHEN, Pei-wen LIU, Xian-fu XU, Bing TIAN, Yun-xiang TONG, Li LI. Formation of second phase and its influence on transformation and properties of Ni-Mn-based magnetic shape memory alloys. Journal of Materials Engineering, 2021, 49(3): 20-30.
MANOSA L , MOYA X , PLANES A , et al. Ni-Mn-based magnetic shape memory alloys: magnetic properties and martensitic transition[J]. Materials Science and Engineering: A, 2008, 481/482, 49- 56.
doi: 10.1016/j.msea.2007.01.178
2
ULLAKKO K , HUANG J K , KANTNER C , et al. Large magnetic-field-induced strains in Ni2MnGa single crystals[J]. Applied Physics Letters, 1996, 69 (13): 1966- 1968.
doi: 10.1063/1.117637
3
O'HANDLEY R C . Model for strain and magnetization in magnetic shape-memory alloys[J]. Journal of Applied Physics, 1998, 83 (6): 3263- 3270.
doi: 10.1063/1.367094
4
KAINUMA R , IMANO Y , ITO W , et al. Magnetic-field-induced shape recovery by reverse phase transformation[J]. Nature, 2006, 439 (7079): 957- 960.
doi: 10.1038/nature04493
5
ITO W , IMANO Y , KAINUMA R , et al. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys[J]. Metallurgical and Materials Transactions A, 2007, 38 (4): 759- 766.
doi: 10.1007/s11661-007-9094-9
6
LAZPITA P , SASMAZ M , CESARI E , et al. Martensitic transformation and magnetic field induced effects in Ni42Co8Mn39Sn11 metamagnetic shape memory alloy[J]. Acta Materialia, 2016, 109, 170- 176.
doi: 10.1016/j.actamat.2016.02.046
7
TURABI A S , KARACA H E , TOBE H , et al. Shape memory effect and superelasticity of NiMnCoIn metamagnetic shape memory alloys under high magnetic field[J]. Scripta Materialia, 2016, 111, 110- 113.
doi: 10.1016/j.scriptamat.2015.08.027
8
SUN W , LIU J , LU B , et al. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys[J]. Scripta Materialia, 2016, 114, 1- 4.
doi: 10.1016/j.scriptamat.2015.11.021
9
GHOTBI VARZANEH A , KAMELI P , ZAHEDI V R , et al. Effect of heat treatment on martensitic transformation of Ni47Mn40Sn13 ferromagnetic shape memory alloy prepared by mechanical alloying[J]. Metals and Materials International, 2015, 21 (4): 758- 764.
doi: 10.1007/s12540-015-4537-0
10
MA S C , SHIH C W , LIU J , et al. Wheel speed-dependent martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn ferromagnetic shape memory alloy ribbons[J]. Acta Materialia, 2015, 90, 292- 302.
doi: 10.1016/j.actamat.2015.03.011
11
WANG D H , HAN Z D , XUAN H C , et al. Martensitic transformation and related magnetic effects in Ni-Mn-based ferromagnetic shape memory alloys[J]. Chinese Physics B, 2013, 22 (7): 077506.
doi: 10.1088/1674-1056/22/7/077506
12
WU Z , LIU Z , YANG H , et al. Metallurgical origin of the effect of Fe doping on the martensitic and magnetic transformation behaviours of Ni50Mn40-xSn10Fex magnetic shape memory alloys[J]. Intermetallics, 2011, 19 (4): 445- 452.
doi: 10.1016/j.intermet.2010.10.010
13
HUANG Y J , HU Q D , LIU J , et al. Banded-like morphology and martensitic transformation of dual-phase Ni-Mn-In magnetic shape memory alloy with enhanced ductility[J]. Acta Materialia, 2013, 61 (15): 5702- 5712.
doi: 10.1016/j.actamat.2013.06.012
14
QU Y H , CONG D Y , SUN X M , et al. Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys[J]. Acta Materialia, 2017, 134, 236- 248.
doi: 10.1016/j.actamat.2017.06.010
15
LIU J , GOTTSCHALL T , SKOKOV K P , et al. Giant magnetocaloric effect driven by structural transitions[J]. Nature Materials, 2012, 11, 620- 626.
doi: 10.1038/nmat3334
WANG J J , YANG D Z . The research on the field induced phase transformation in actuator materials[J]. Journal of Dalian University, 1998, 19 (6): 1- 4.
17
SÖDERBERG O , GE Y , SOZINOV A , et al. Recent breakthrough development of the magnetic shape memory effect in Ni-Mn-Ga alloys[J]. Smart Materials and Structures, 2005, 14, 223- 235.
doi: 10.1088/0964-1726/14/5/009
18
SOZINOV A , LIKHACHEV A A , LANSKA N , et al. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase[J]. Applied Physics Letters, 2002, 80, 1746- 1748.
doi: 10.1063/1.1458075
19
CHERNENKO V A , BESSEGHINI S . Ferromagnetic shape memory alloys: scientific and applied aspects[J]. Sensors and Actuators A: Physical, 2008, 142 (2): 542- 548.
doi: 10.1016/j.sna.2007.05.023
20
MURRAY S J , MARIONI M , ALLEN S M , et al. 6% Magnetic-field-induced strain by twin-boundary motion in ferromagnetic NiMnGa[J]. Applied Physics Letters, 2000, 77 (6): 886- 888.
doi: 10.1063/1.1306635
21
KHAN M , PATHAK A K , PAUDEL M R , et al. Magnetoresistance and field-induced structural transitions in Ni50Mn50-xSnx Heusler alloys[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (3/4): L21- L25.
22
LI Z Z , LI Z B , YANG J J , et al. Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain[J]. Scripta Materialia, 2019, 162, 486- 491.
doi: 10.1016/j.scriptamat.2018.12.019
23
LI Y , WANG H , YAO Y , et al. Magnetic phase diagram, magnetocaloric effect, and exchange bias in Ni43Mn46Sn11-xGax Heusler alloys[J]. Journal of Magnetism and Magnetic Materials, 2019, 478, 161- 169.
doi: 10.1016/j.jmmm.2019.02.001
24
LIANG T , JIANG C B , XU H B , et al. Phase transition strain and large magnetic field induced strain in Ni50.5Mn24Ga25.5 unidirectionally solidified alloy[J]. Journal of Magnetism and Magnetic Materials, 2004, 268 (1/2): 29- 32.
25
CHERECHUKIN A A , DIKSHTEIN I E , ERMAKOV D I , et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni-Mn-Fe-Ga alloy[J]. Physics Letters A, 2001, 291 (2/3): 175- 183.
26
JIN X , MARIONI M , BONO D , et al. Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration[J]. Journal of Applied Physics, 2002, 91 (10): 8222- 8224.
doi: 10.1063/1.1453943
27
FENG Y , SUI J H , GAO Z Y , et al. Microstructure, phase transitions and mechanical properties of Ni50Mn34In16-yCoy alloys[J]. Journal of Alloys and Compounds, 2009, 476 (1/2): 935- 939.
28
HAN Z D , WANG D H , ZHANG C L , et al. Low-field inverse magnetocaloric effect in Ni50-xMn39+xSn11 Heusler alloys[J]. Applied Physics Letters, 2007, 90 (4): 042507.
doi: 10.1063/1.2435593
29
KRENKE T , ACET M , WASSERMANN E F , et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys[J]. Physical Review B, 2006, 73 (17): 174413.
doi: 10.1103/PhysRevB.73.174413
30
SHARMA V K , CHATTOPADHYAY M K , ROY S B . Large inverse magnetocaloric effect in Ni50Mn34In16[J]. Journal of Physics D, 2007, 40 (7): 1869- 1873.
doi: 10.1088/0022-3727/40/7/005
31
ZHANG R , QIAN M , ZHANG X , et al. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys[J]. Journal of Magnetism and Magnetic Materials, 2017, 428, 464- 468.
doi: 10.1016/j.jmmm.2016.12.138
32
YU S Y , CAO Z X , MA L , et al. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys[J]. Applied Physics Letters, 2007, 91 (10): 102507.
doi: 10.1063/1.2783188
33
LIU Z H , ZHANG M , WANG W Q , et al. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa[J]. Journal of Applied Physics, 2002, 92 (9): 5006- 5010.
doi: 10.1063/1.1511293
34
CHEN F , TONG Y X , HUANG Y J , et al. Suppression of γ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties[J]. Intermetallics, 2013, 36, 81- 85.
doi: 10.1016/j.intermet.2013.01.004
35
ITO K , ITO W , UMETSU R Y , et al. Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering[J]. Scripta Materialia, 2009, 61 (5): 504- 507.
doi: 10.1016/j.scriptamat.2009.05.008
36
TSUCHIYA K , TSUTSUMI A , OHTSUKA H , et al. Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements[J]. Materials Science and Engineering: A, 2004, 378 (1/2): 370- 376.
37
CHEN F , LIU W L , SHI Y G , et al. Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon[J]. Journal of Magnetism and Magnetic Materials, 2015, 377, 137- 141.
doi: 10.1016/j.jmmm.2014.10.077
38
LIU J , WOODCOCK T G , SCHEERBAUM N , et al. Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons[J]. Acta Materialia, 2009, 57 (16): 4911- 4920.
doi: 10.1016/j.actamat.2009.06.054
39
WANG J , WANG H , JIANG C . Microstructure and mechanical properties of a Ni30Cu20Mn41.5Ga8.5 dual-phase shape memory alloy[J]. Materials Science and Engineering: A, 2013, 578, 256- 259.
doi: 10.1016/j.msea.2013.04.111
40
GAO Z Y , DONG G F , CAI W , et al. Martensitic transformation and mechanical properties in an aged Ni-Mn-Ga-Ti ferromagnetic shape memory alloy[J]. Journal of Alloys and Compounds, 2009, 481 (1/2): 44- 47.
41
DONG G F , CAI W , GAO Z Y . Microstructure and martensitic transformation of Ni-Mn-Ga-Ti ferromagnetic shape memory alloys[J]. Journal of Alloys and Compounds, 2008, 465 (1/2): 173- 176.
42
ZHANG H , QIAN M , ZHANG X , et al. Martensite transformation and magnetic properties of Fe-doped Ni-Mn-Sn alloys with dual phases[J]. Journal of Alloys and Compounds, 2016, 689, 481- 488.
doi: 10.1016/j.jallcom.2016.07.282
43
TIAN B , JIANG Y L , CHEN F , et al. Effect of Zr addition on the microstructure, phase transformation and mechanical property of Ni50Mn25Ga17Cu8 alloy[J]. Materials Science and Engineering: A, 2014, 617, 46- 51.
doi: 10.1016/j.msea.2014.08.039
44
TIAN B , JI R , TONG Y X , et al. Microstructure, phase transformation and mechanical property of Nb-doped Ni-Mn-Ga alloys[J]. Intermetallics, 2015, 64, 37- 43.
doi: 10.1016/j.intermet.2015.04.015
45
SHEN A , SUN W , ZHAO D , et al. Influence of Cr on microstructure and elastocaloric effect in Ni-Mn-In-Co-Cr polycrystalline alloys[J]. Physics Letters A, 2018, 382 (39): 2876- 2879.
doi: 10.1016/j.physleta.2018.06.022
46
ZHANG Y , LIU J , ZHENG Q , et al. Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys[J]. Scripta Materialia, 2014, 75, 26- 29.
doi: 10.1016/j.scriptamat.2013.11.009
47
XUAN H C , WANG D H , ZHANG C L , et al. Boron's effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys[J]. Applied Physics Letters, 2008, 92 (10): 102503.
doi: 10.1063/1.2895645
48
ZHAO X G , LI B , HSIEH C C , et al. The effect of B doping on the martensitic transitions, magnetocaloric and magnetic properties in Ni48Mn39In13-xBx ribbons[J]. IEEE Transactions on Magnetics, 2012, 48, 3742- 3745.
doi: 10.1109/TMAG.2012.2196982
49
YANG Z , CONG D Y , SUN X M , et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys[J]. Acta Materialia, 2017, 127, 33- 42.
doi: 10.1016/j.actamat.2017.01.025
50
CAI W , GAO L , LIU A L , et al. Martensitic transformation and mechanical properties of Ni-Mn-Ga-Y ferromagnetic shape memory alloys[J]. Scripta Materialia, 2007, 57 (22): 659- 662.
51
GAO L , SUI J H , CAI W . Influence of rare earth Gd addition on the structural and magnetic transitions of Ni-Mn-Ga alloys[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (1/2): 63- 67.
52
GAO L , SHEN X , XU J , et al. Mechanical and magnetic properties of Ni-Mn-Ga-Gd ferromagnetic shape memory alloys[J]. Materials Transactions, 2015, 56 (8): 1186- 1191.
doi: 10.2320/matertrans.M2015143
53
GAO L , LI K F , LIANG Y C , et al. Reversibility of magnetostructural transition and associated magnetocaloric effect above room temperature in Ni-Co-Mn-In-Gd polycrystal[J]. Journal of Magnetism and Magnetic Materials, 2018, 454, 337- 341.
doi: 10.1016/j.jmmm.2018.01.065
54
SUI J , ZHANG X , GAO L , et al. Microstructure, phase transformation and mechanical properties of Ni-Mn-Ga-Y magnetic shape memory alloys[J]. Journal of Alloys and Compounds, 2011, 509 (35): 8692- 8699.
doi: 10.1016/j.jallcom.2011.06.013
LI K M , CHEN F , TONG Y X , et al. Effect of Y on martensitic transformation and mechanical properties of NiMnSn high temperature memory alloy[J]. Rare Metal Materials and Engineering, 2013, 42 (Suppl 2): 370- 374.
56
WU Y , WANG J , HUA H , et al. Phase transition and magnetocaloric effect of Ni50Mn29Ga21-xTbx (0≤ x ≤ 1) alloys[J]. Journal of Alloys and Compounds, 2015, 632, 681- 685.
doi: 10.1016/j.jallcom.2015.01.279
57
WU Y , WANG J , JIANG C , et al. Martensitic transformation, shape memory effect and mechanical properties of dual-phase Ni50-xTbxMn30Ga20 (x=0-1) alloys[J]. Materials Science and Engineering: A, 2015, 646, 288- 293.
doi: 10.1016/j.msea.2015.08.080
58
WU Y , WANG J , ZHANG J , et al. Magneto-structural transition and magnetocaloric effect of Ni50-xTbxMn30Ga20 (x=0-1) alloys[J]. Intermetallics, 2017, 89, 100- 104.
doi: 10.1016/j.intermet.2017.05.021
59
GAO L , SUI J H , CAI W , et al. Study of the precipitate phases and martensitic transformation in quaternary Heusler alloys of NiMnGaDy[J]. Solid State Communications, 2009, 149 (5/6): 257- 260.
60
DONG G , TAN C , GAO Z , et al. The effect of ageing on the microstructure and mechanical properties of Ni53Mn23.5Ga18.5Ti5 ferromagnetic shape memory alloy[J]. Scripta Materialia, 2008, 59 (3): 268- 271.
doi: 10.1016/j.scriptamat.2008.02.058
CHEN F , TONG Y X , TIAN B , et al. Martensitic transformation and microstructure of NiCoMnSn high temperature shape memory alloys[J]. Rare Metals, 2013, 37 (1): 6- 13.
62
YAN J L , LI Z Z , CHEN X , et al. Martensitic transition and magnetocaloric properties in Ni45Mn44-xFexSn11 alloys[J]. Journal of Alloys and Compounds, 2010, 506 (2): 516- 519.
doi: 10.1016/j.jallcom.2010.07.076
63
ZHANG H , ZHANG X , QIAN M , et al. Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior[J]. Journal of Alloys and Compounds, 2017, 715, 206- 213.
doi: 10.1016/j.jallcom.2017.04.277
64
CHEN F , SANCHEZ LLAMAZARES J L , SANCHEZ-VALDES C F , et al. Ni-Co-Mn-Sn quaternary alloys: magnetic hysteresis loss reduction and ductility enhancement by iron alloying[J]. Journal of Magnetism and Magnetic Materials, 2019, 485, 351- 357.
doi: 10.1016/j.jmmm.2019.04.100
65
ŁASZCZ A , HASIAK M , KALETA J . Effects of Ti and Gd for Ga substitution on microstructure, magnetic and mechanical properties of polycrystalline Ni-Mn-Ga magnetic shape memory alloy[J]. Journal of Magnetism and Magnetic Materials, 2019, 476, 497- 505.
doi: 10.1016/j.jmmm.2019.01.031
66
VILLA E , VILLA E , MELZI D'ERIL M , et al. The role of γ-phase on the thermo-mechanical properties of NiMnGaFe alloys polycrystalline samples[J]. Journal of Alloys and Compounds, 2018, 763, 883- 890.
doi: 10.1016/j.jallcom.2018.06.028
LI J G , ZHENG H X , MA W Z , et al. Crystal growth of magnetic shape memory NiMnFeGa alloy under high temperature gradient unidirectional solidification condition[J]. Journal of Aeronautical Materials, 2003, 23 (Suppl): 1- 4.
68
CHEN F , TONG Y X , LI L , et al. Broad first-order magnetic entropy change curve in directionally solidified polycrystalline Ni-Co-Mn-In[J]. Journal of Alloys and Compounds, 2017, 727, 603- 609.
doi: 10.1016/j.jallcom.2017.08.118
69
FENG Y , SUI J H , GAO Z Y , et al. Investigation on martensitic transformation behavior, microstructures and mechanical properties of Fe-doped Ni-Mn-In alloys[J]. Materials Science and Engineering: A, 2009, 507 (1): 174- 178.
70
WU Y , WANG J , JIANG C , et al. Effect of coherent nanoprecipitates on martensitic transformation in Tb-doped NiMnGa melt-spun ribbons[J]. Intermetallics, 2018, 97, 42- 51.
doi: 10.1016/j.intermet.2018.03.012
LI K M, CHEN F, GUO L, et al. Effect of the doping of rare earth element Ce on martensitic transformation and mechanical properties of NiMnSn high temperature shape memory alloys[EB/OL]. Beijing: China Science and Technology[2011-08-05]. http://www.paper.edu.cn/releasepaper/content/201108-114.
72
WU Y , WANG X , WANG J , et al. Magneto-structural transition and magnetocaloric effect of melt spinning Ni50Mn29Ga21-xTbx (x=0-1) ribbons[J]. Intermetallics, 2016, 69, 118- 122.
doi: 10.1016/j.intermet.2015.10.004
73
YAN H L , SANCHEZ-VALDES C F , ZHANG Y D , et al. Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50.0Mn35.25In14.75 melt-spun ribbons[J]. Journal of Alloys and Compounds, 2018, 767, 544- 551.
doi: 10.1016/j.jallcom.2018.07.063