Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 20-30    DOI: 10.11868/j.issn.1001-4381.2020.000534
  记忆合金专栏 本期目录 | 过刊浏览 | 高级检索 |
Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响
陈枫(), 刘佩文, 许贤福, 田兵, 佟运祥, 李莉
哈尔滨工程大学 材料科学与化学工程学院, 哈尔滨 150001
Formation of second phase and its influence on transformation and properties of Ni-Mn-based magnetic shape memory alloys
Feng CHEN(), Pei-wen LIU, Xian-fu XU, Bing TIAN, Yun-xiang TONG, Li LI
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
全文: PDF(793 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

Ni-Mn基磁性形状记忆合金具有良好的温度场和磁场诱发的形状记忆效应、超弹性、磁热效应、磁阻效应、弹热效应、交换偏置效应等功能特性。作为一种新型多功能材料,有望应用于驱动器、传感器等多个工程领域。本文详细阐述了包含第二相的Ni-Mn基磁性形状记忆合金的研究现状,梳理和总结了第二相的形成及其对马氏体相变、功能特性和力学性能的影响,提出了一些有待解决的问题,如第二相对包括磁性形状记忆效应在内的磁功能特性的影响,并指出未来应着重于研究第二相形成与演化过程的热力学/动力学因素,对第二相进行合理调控,从而优化合金功能特性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈枫
刘佩文
许贤福
田兵
佟运祥
李莉
关键词 Ni-Mn基合金磁性形状记忆合金第二相马氏体相变    
Abstract

Ni-Mn-based magnetic shape memory alloys have excellent shape memory effects induced by the temperature field and magnetic field, superelasticity, magnetocaloric effect, magnetoresistive effect, elastocaloric effect, exchange bias effect, etc. As a new type of multi-functional material, it is expected to be used in many engineering fields such as actuators, sensors and so on. The research status of Ni-Mn-based magnetic shape memory alloys containing the second phase was described in detail. The formation of the second phase and its influence on martensitic transformation, functional performance and mechanical properties were summarized. Several important and unresolved issues currently were presented, such as the impact of the second phase on magnetic functional properties including magnetic shape memory effect. It was pointed out that in future work, it is essential to study the thermodynamic and kinetic factors of the formation and evolution of the second phase, and properly regulate the second phase so as to optimize the functional properties of the alloys.

Key wordsNi-Mn-based alloy    magnetic shape memory alloy    secondary phase    martensitic transf-ormation
收稿日期: 2020-06-15      出版日期: 2021-03-20
中图分类号:  TG139+.6  
基金资助:国家自然科学基金项目(51804105);中央高校基本科研业务费专项资金项目(3072020CF1003)
通讯作者: 陈枫     E-mail: chenfeng01@hrbeu.edu.cn
作者简介: 陈枫(1976-), 男, 副教授, 博士, 主要从事新型形状记忆合金、磁制冷合金、阻尼合金等方面研究, 联系地址: 黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学基础楼251室(150001), E-mail: chenfeng01@hrbeu.edu.cn
引用本文:   
陈枫, 刘佩文, 许贤福, 田兵, 佟运祥, 李莉. Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响[J]. 材料工程, 2021, 49(3): 20-30.
Feng CHEN, Pei-wen LIU, Xian-fu XU, Bing TIAN, Yun-xiang TONG, Li LI. Formation of second phase and its influence on transformation and properties of Ni-Mn-based magnetic shape memory alloys. Journal of Materials Engineering, 2021, 49(3): 20-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000534      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/20
Sample Processing condition Second phase
Morphology Type Distribution Crystal structure Composition
Ni50-xMn41CoxSn9(x=10, 12)[34, 61] Arc melting.Annealed at 900 ℃ for 6 h Branching γ Grain boundary FCC Co-rich, Sn-poor
Ni38Co12Mn41Sn9 ribbon[34, 37] Annealed at 800 ℃ for 5 h and 10 h.Annealed at 900 ℃ for 0.5 h Particulate γ Grain boundary and grain interior FCC Co-rich, Sn-poor
Ni42Co8Mn39Sn11[6] Arc melting.Annealed at 900 ℃ for 14 d + 800 ℃ for 0.5 h Particulate γ FCC Co-rich, Sn-poor
Ni43Co7Mn39Sn11[35] Spark plasma sintering at 900 ℃ for 15 min FCC Co-rich, Sn-poor
Ni45Mn44-xFexSn11 (x=5, 8)[62] Arc melting.Annealed at 900 ℃ for 10 d MnNiFe phase
Ni50Mn40-xSn10Fex(x=4, 5, 6)[12] Arc melting.Annealed at 900 ℃+furnace cooling γ FCC NiMnFe phase
Ni50-xFexMn38Sn12(x=2.9, 4.2, 5.5, 8.5)[42, 63] Arc melting.Annealed at 900 ℃ for 24 h Particulate γ Grain boundary and grain interior FCC Fe-rich, Sn-poor
Ni40Co10-xFexMn41Sn9 (x=2, 3)[64] Arc melting.Annealed at 900 ℃ for 6 h Particulate γ Grain boundary and grain interior FCC Co-rich
Ni43Mn46Sn11Cx(x=2, 4, 8)[46] Arc melting.Annealed at 900 ℃ for 24 h Stripe-like Grain boundary MnC
Ni43Mn46Sn11Bx(x=3, 5)[47] Arc melting.Annealed at 850 ℃ for 72 h Mn2B
Table 1  含第二相的Ni-Mn-Sn基合金系及第二相的表征(合金系中除薄带外,其余均为多晶块体)
Sample Processing condition Second phase
Morphology Type Distribution Crystal structure Composition
Ni50Mn29Ga21-xGdx(x=0.1, 0.5, 1, 2, 5)[51-52] Arc melting.Annealed at 800 ℃ for 24 h Grain boundary Gd(Ni, Mn)4Ga
Ni50Mn25Ga20Gd5[65] Arc melting.Annealed at 900 ℃ for 5 h Gd-rich
Ni50Mn28Ga22-xYx(x=0.2, 1, 3)[50] Arc melting.Annealed at 800 ℃ for 24 h Grain boundary Y-rich
Ni50Mn29Ga21-xYx(x=0.1, 0.5, 1, 2, 5)[54] Arc melting.Annealed at 800 ℃ for 24 h Grain boundary Y(Ni, Mn)4Ga
Ni50Mn29Ga21-xDyx(x=0.1, 0.2, 0.5, 1, 2, 5)[59] Arc melting.Annealed at 800 ℃ for 24 h Grain boundary Dy(Ni, Mn)4Ga
Ni50Mn29Ga21-xTbx(x=0.1, 0.2, 0.5, 1)[56] Arc melting.Annealed at 850 ℃ for 48 h Grain boundary Tb-rich
Ni50-xTbxMn30Ga20(x=0.1, 0.2, 0.5, 0.8, 1)[57] Arc melting.Annealed at 850 ℃ for 48 h Grain boundary HCP Tb-rich, Mn-poor
Ni53Mn23.5Ga18.5Ti5[40] Arc melting.Annealed at 1000 ℃ for 5 h+aging at 600 ℃ for more than 10 min Particulate to lenticular Ni3Ti
Ni53Mn23.5Ga23.5-xTix (x=0.5, 2, 3.5, 5)[41] Arc melting.Annealed at 1000 ℃ for 5 h + aging at 900 ℃ for 3 h Particulate Grain boundary and grain interior Ni71.9Mn7.0Ga4.5Ti16.6
Ni50.5Mn25-xFexGa24.5 (x=17, 19)[33] Arc melting.Annealed at 800 ℃ for 4 d Lenticular γ Ni49Fe32Ga19
Ni50Mn15-xGa20Fe15+x (x=0, 5)[66] Arc melting.Annealed at 900 ℃ for 5 h γ Grain boundary and grain interior Fe-rich
Ni52Mn10Fe14Ga24[66] Arc melting.Annealed at 900 ℃ for 5 h γ Grain boundary Fe-rich
Ni51.2Mn20Fe13Ga15.8[67] Directional solidification.Annealed at 800 ℃ for 96 h Particulate and strip-like γ Grain boundary Ni52Mn17.8Fe18.2Ga12
(Ni49.8Mn28.5Ga21.7)100-xNbx(x=3, 6, 9)[44] Arc melting.Annealed at 900 ℃ for 12 h Particulate and branching Grain boundary Nb-rich
Ni50Mn25Ga17Cu4Zr4[43] Arc melting.Annealed at 900 ℃ for 12 h Fishbone-like γ FCC Zr-rich
Ni50Mn25Ga17Zr8[43] Arc melting.Annealed at 900 ℃ for 12 h Branching γ FCC Zr-rich
Ni30Cu20Mn41.5Ga8.5[39] Arc melting.Annealed at 850 ℃ for 48 h Thin plate-like Grain boundary and grain interior Ni27.6Cu23.7Mn41.9Ga6.8
Table 2  含第二相的Ni-Mn-Ga基合金系及第二相的表征(合金系均为多晶块体)
Sample Processing condition Second phase
Morphology Type Distribution Crystal structure Composition
Ni52Mn32In16[13] Directional solidification.Annealed at 900 ℃ for 24 h γ FCC Ni62.4Mn32.5In5.1
Ni46Mn35In14Co5 ribbon[38] Annealed at 900 ℃ for 2 h Particulate γ Grain boundary and grain interior FCC Co-rich, In-poor
Ni42Co8Mn38In12[68] Directional solidification.Annealed at 900 ℃ for 24 h Particulate γ Grain boundary and grain interior FCC Co-rich, In-poor
Ni50Mn34In16-yCoy(y=3, 4, 5, 8)[27] Arc melting.Annealed at 900 ℃ for 12 h Particulate γ Grain boundary and grain interior FCC Co-rich, In-poor
Ni50Mn34In16-yFey(y=5, 8)[69] Arc melting.Annealed at 900 ℃ for 12 h γ Grain boundary and grain interior FCC Fe-rich, In-poor
Ni48Mn39In13-xBx(x=3, 4) ribbon[48] Annealed at 900 ℃ for 20 min Mn2B
(Ni51.5Mn33In15.5)100-xBx(x=0.1, 0.2, 0.3, 0.4, 0.6) [49] Arc melting.Annealed at 900 ℃ for 30 min Grain boundary Ni-rich, In-poor
Ni45Co5Mn35In14Gd1[53] Arc melting.Annealed at 900 ℃ for 12 h Grain boundary and grain interior Gd-rich
Ni45Mn37-xIn13Co5Crx (x=1, 2)[45] Induction melting.Annealed at 850 ℃ for 24 h Grain boundary Ni38.5Mn36.2In11.1Co5.3Cr8.9, Ni39.2Mn35.2In6.0Co12.0Cr7.6
Table 3  含第二相的Ni-Mn-In基合金系及第二相的表征(合金系中除薄带和取向多晶外,其余均为多晶块体)
1 MANOSA L , MOYA X , PLANES A , et al. Ni-Mn-based magnetic shape memory alloys: magnetic properties and martensitic transition[J]. Materials Science and Engineering: A, 2008, 481/482, 49- 56.
doi: 10.1016/j.msea.2007.01.178
2 ULLAKKO K , HUANG J K , KANTNER C , et al. Large magnetic-field-induced strains in Ni2MnGa single crystals[J]. Applied Physics Letters, 1996, 69 (13): 1966- 1968.
doi: 10.1063/1.117637
3 O'HANDLEY R C . Model for strain and magnetization in magnetic shape-memory alloys[J]. Journal of Applied Physics, 1998, 83 (6): 3263- 3270.
doi: 10.1063/1.367094
4 KAINUMA R , IMANO Y , ITO W , et al. Magnetic-field-induced shape recovery by reverse phase transformation[J]. Nature, 2006, 439 (7079): 957- 960.
doi: 10.1038/nature04493
5 ITO W , IMANO Y , KAINUMA R , et al. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys[J]. Metallurgical and Materials Transactions A, 2007, 38 (4): 759- 766.
doi: 10.1007/s11661-007-9094-9
6 LAZPITA P , SASMAZ M , CESARI E , et al. Martensitic transformation and magnetic field induced effects in Ni42Co8Mn39Sn11 metamagnetic shape memory alloy[J]. Acta Materialia, 2016, 109, 170- 176.
doi: 10.1016/j.actamat.2016.02.046
7 TURABI A S , KARACA H E , TOBE H , et al. Shape memory effect and superelasticity of NiMnCoIn metamagnetic shape memory alloys under high magnetic field[J]. Scripta Materialia, 2016, 111, 110- 113.
doi: 10.1016/j.scriptamat.2015.08.027
8 SUN W , LIU J , LU B , et al. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys[J]. Scripta Materialia, 2016, 114, 1- 4.
doi: 10.1016/j.scriptamat.2015.11.021
9 GHOTBI VARZANEH A , KAMELI P , ZAHEDI V R , et al. Effect of heat treatment on martensitic transformation of Ni47Mn40Sn13 ferromagnetic shape memory alloy prepared by mechanical alloying[J]. Metals and Materials International, 2015, 21 (4): 758- 764.
doi: 10.1007/s12540-015-4537-0
10 MA S C , SHIH C W , LIU J , et al. Wheel speed-dependent martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn ferromagnetic shape memory alloy ribbons[J]. Acta Materialia, 2015, 90, 292- 302.
doi: 10.1016/j.actamat.2015.03.011
11 WANG D H , HAN Z D , XUAN H C , et al. Martensitic transformation and related magnetic effects in Ni-Mn-based ferromagnetic shape memory alloys[J]. Chinese Physics B, 2013, 22 (7): 077506.
doi: 10.1088/1674-1056/22/7/077506
12 WU Z , LIU Z , YANG H , et al. Metallurgical origin of the effect of Fe doping on the martensitic and magnetic transformation behaviours of Ni50Mn40-xSn10Fex magnetic shape memory alloys[J]. Intermetallics, 2011, 19 (4): 445- 452.
doi: 10.1016/j.intermet.2010.10.010
13 HUANG Y J , HU Q D , LIU J , et al. Banded-like morphology and martensitic transformation of dual-phase Ni-Mn-In magnetic shape memory alloy with enhanced ductility[J]. Acta Materialia, 2013, 61 (15): 5702- 5712.
doi: 10.1016/j.actamat.2013.06.012
14 QU Y H , CONG D Y , SUN X M , et al. Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys[J]. Acta Materialia, 2017, 134, 236- 248.
doi: 10.1016/j.actamat.2017.06.010
15 LIU J , GOTTSCHALL T , SKOKOV K P , et al. Giant magnetocaloric effect driven by structural transitions[J]. Nature Materials, 2012, 11, 620- 626.
doi: 10.1038/nmat3334
16 王吉军, 杨大智. 场诱发相变驱动材料研究[J]. 大连大学学报, 1998, 19 (6): 1- 4.
16 WANG J J , YANG D Z . The research on the field induced phase transformation in actuator materials[J]. Journal of Dalian University, 1998, 19 (6): 1- 4.
17 SÖDERBERG O , GE Y , SOZINOV A , et al. Recent breakthrough development of the magnetic shape memory effect in Ni-Mn-Ga alloys[J]. Smart Materials and Structures, 2005, 14, 223- 235.
doi: 10.1088/0964-1726/14/5/009
18 SOZINOV A , LIKHACHEV A A , LANSKA N , et al. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase[J]. Applied Physics Letters, 2002, 80, 1746- 1748.
doi: 10.1063/1.1458075
19 CHERNENKO V A , BESSEGHINI S . Ferromagnetic shape memory alloys: scientific and applied aspects[J]. Sensors and Actuators A: Physical, 2008, 142 (2): 542- 548.
doi: 10.1016/j.sna.2007.05.023
20 MURRAY S J , MARIONI M , ALLEN S M , et al. 6% Magnetic-field-induced strain by twin-boundary motion in ferromagnetic NiMnGa[J]. Applied Physics Letters, 2000, 77 (6): 886- 888.
doi: 10.1063/1.1306635
21 KHAN M , PATHAK A K , PAUDEL M R , et al. Magnetoresistance and field-induced structural transitions in Ni50Mn50-xSnx Heusler alloys[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (3/4): L21- L25.
22 LI Z Z , LI Z B , YANG J J , et al. Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain[J]. Scripta Materialia, 2019, 162, 486- 491.
doi: 10.1016/j.scriptamat.2018.12.019
23 LI Y , WANG H , YAO Y , et al. Magnetic phase diagram, magnetocaloric effect, and exchange bias in Ni43Mn46Sn11-xGax Heusler alloys[J]. Journal of Magnetism and Magnetic Materials, 2019, 478, 161- 169.
doi: 10.1016/j.jmmm.2019.02.001
24 LIANG T , JIANG C B , XU H B , et al. Phase transition strain and large magnetic field induced strain in Ni50.5Mn24Ga25.5 unidirectionally solidified alloy[J]. Journal of Magnetism and Magnetic Materials, 2004, 268 (1/2): 29- 32.
25 CHERECHUKIN A A , DIKSHTEIN I E , ERMAKOV D I , et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni-Mn-Fe-Ga alloy[J]. Physics Letters A, 2001, 291 (2/3): 175- 183.
26 JIN X , MARIONI M , BONO D , et al. Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration[J]. Journal of Applied Physics, 2002, 91 (10): 8222- 8224.
doi: 10.1063/1.1453943
27 FENG Y , SUI J H , GAO Z Y , et al. Microstructure, phase transitions and mechanical properties of Ni50Mn34In16-yCoy alloys[J]. Journal of Alloys and Compounds, 2009, 476 (1/2): 935- 939.
28 HAN Z D , WANG D H , ZHANG C L , et al. Low-field inverse magnetocaloric effect in Ni50-xMn39+xSn11 Heusler alloys[J]. Applied Physics Letters, 2007, 90 (4): 042507.
doi: 10.1063/1.2435593
29 KRENKE T , ACET M , WASSERMANN E F , et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys[J]. Physical Review B, 2006, 73 (17): 174413.
doi: 10.1103/PhysRevB.73.174413
30 SHARMA V K , CHATTOPADHYAY M K , ROY S B . Large inverse magnetocaloric effect in Ni50Mn34In16[J]. Journal of Physics D, 2007, 40 (7): 1869- 1873.
doi: 10.1088/0022-3727/40/7/005
31 ZHANG R , QIAN M , ZHANG X , et al. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys[J]. Journal of Magnetism and Magnetic Materials, 2017, 428, 464- 468.
doi: 10.1016/j.jmmm.2016.12.138
32 YU S Y , CAO Z X , MA L , et al. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys[J]. Applied Physics Letters, 2007, 91 (10): 102507.
doi: 10.1063/1.2783188
33 LIU Z H , ZHANG M , WANG W Q , et al. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa[J]. Journal of Applied Physics, 2002, 92 (9): 5006- 5010.
doi: 10.1063/1.1511293
34 CHEN F , TONG Y X , HUANG Y J , et al. Suppression of γ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties[J]. Intermetallics, 2013, 36, 81- 85.
doi: 10.1016/j.intermet.2013.01.004
35 ITO K , ITO W , UMETSU R Y , et al. Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering[J]. Scripta Materialia, 2009, 61 (5): 504- 507.
doi: 10.1016/j.scriptamat.2009.05.008
36 TSUCHIYA K , TSUTSUMI A , OHTSUKA H , et al. Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements[J]. Materials Science and Engineering: A, 2004, 378 (1/2): 370- 376.
37 CHEN F , LIU W L , SHI Y G , et al. Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon[J]. Journal of Magnetism and Magnetic Materials, 2015, 377, 137- 141.
doi: 10.1016/j.jmmm.2014.10.077
38 LIU J , WOODCOCK T G , SCHEERBAUM N , et al. Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons[J]. Acta Materialia, 2009, 57 (16): 4911- 4920.
doi: 10.1016/j.actamat.2009.06.054
39 WANG J , WANG H , JIANG C . Microstructure and mechanical properties of a Ni30Cu20Mn41.5Ga8.5 dual-phase shape memory alloy[J]. Materials Science and Engineering: A, 2013, 578, 256- 259.
doi: 10.1016/j.msea.2013.04.111
40 GAO Z Y , DONG G F , CAI W , et al. Martensitic transformation and mechanical properties in an aged Ni-Mn-Ga-Ti ferromagnetic shape memory alloy[J]. Journal of Alloys and Compounds, 2009, 481 (1/2): 44- 47.
41 DONG G F , CAI W , GAO Z Y . Microstructure and martensitic transformation of Ni-Mn-Ga-Ti ferromagnetic shape memory alloys[J]. Journal of Alloys and Compounds, 2008, 465 (1/2): 173- 176.
42 ZHANG H , QIAN M , ZHANG X , et al. Martensite transformation and magnetic properties of Fe-doped Ni-Mn-Sn alloys with dual phases[J]. Journal of Alloys and Compounds, 2016, 689, 481- 488.
doi: 10.1016/j.jallcom.2016.07.282
43 TIAN B , JIANG Y L , CHEN F , et al. Effect of Zr addition on the microstructure, phase transformation and mechanical property of Ni50Mn25Ga17Cu8 alloy[J]. Materials Science and Engineering: A, 2014, 617, 46- 51.
doi: 10.1016/j.msea.2014.08.039
44 TIAN B , JI R , TONG Y X , et al. Microstructure, phase transformation and mechanical property of Nb-doped Ni-Mn-Ga alloys[J]. Intermetallics, 2015, 64, 37- 43.
doi: 10.1016/j.intermet.2015.04.015
45 SHEN A , SUN W , ZHAO D , et al. Influence of Cr on microstructure and elastocaloric effect in Ni-Mn-In-Co-Cr polycrystalline alloys[J]. Physics Letters A, 2018, 382 (39): 2876- 2879.
doi: 10.1016/j.physleta.2018.06.022
46 ZHANG Y , LIU J , ZHENG Q , et al. Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys[J]. Scripta Materialia, 2014, 75, 26- 29.
doi: 10.1016/j.scriptamat.2013.11.009
47 XUAN H C , WANG D H , ZHANG C L , et al. Boron's effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys[J]. Applied Physics Letters, 2008, 92 (10): 102503.
doi: 10.1063/1.2895645
48 ZHAO X G , LI B , HSIEH C C , et al. The effect of B doping on the martensitic transitions, magnetocaloric and magnetic properties in Ni48Mn39In13-xBx ribbons[J]. IEEE Transactions on Magnetics, 2012, 48, 3742- 3745.
doi: 10.1109/TMAG.2012.2196982
49 YANG Z , CONG D Y , SUN X M , et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys[J]. Acta Materialia, 2017, 127, 33- 42.
doi: 10.1016/j.actamat.2017.01.025
50 CAI W , GAO L , LIU A L , et al. Martensitic transformation and mechanical properties of Ni-Mn-Ga-Y ferromagnetic shape memory alloys[J]. Scripta Materialia, 2007, 57 (22): 659- 662.
51 GAO L , SUI J H , CAI W . Influence of rare earth Gd addition on the structural and magnetic transitions of Ni-Mn-Ga alloys[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (1/2): 63- 67.
52 GAO L , SHEN X , XU J , et al. Mechanical and magnetic properties of Ni-Mn-Ga-Gd ferromagnetic shape memory alloys[J]. Materials Transactions, 2015, 56 (8): 1186- 1191.
doi: 10.2320/matertrans.M2015143
53 GAO L , LI K F , LIANG Y C , et al. Reversibility of magnetostructural transition and associated magnetocaloric effect above room temperature in Ni-Co-Mn-In-Gd polycrystal[J]. Journal of Magnetism and Magnetic Materials, 2018, 454, 337- 341.
doi: 10.1016/j.jmmm.2018.01.065
54 SUI J , ZHANG X , GAO L , et al. Microstructure, phase transformation and mechanical properties of Ni-Mn-Ga-Y magnetic shape memory alloys[J]. Journal of Alloys and Compounds, 2011, 509 (35): 8692- 8699.
doi: 10.1016/j.jallcom.2011.06.013
55 李剋蒙, 陈枫, 佟运祥, 等. 钇对NiMnSn高温记忆合金相变和力学性能的影响[J]. 稀有金属材料与工程, 2013, 42 (增刊2): 370- 374.
55 LI K M , CHEN F , TONG Y X , et al. Effect of Y on martensitic transformation and mechanical properties of NiMnSn high temperature memory alloy[J]. Rare Metal Materials and Engineering, 2013, 42 (Suppl 2): 370- 374.
56 WU Y , WANG J , HUA H , et al. Phase transition and magnetocaloric effect of Ni50Mn29Ga21-xTbx (0≤ x ≤ 1) alloys[J]. Journal of Alloys and Compounds, 2015, 632, 681- 685.
doi: 10.1016/j.jallcom.2015.01.279
57 WU Y , WANG J , JIANG C , et al. Martensitic transformation, shape memory effect and mechanical properties of dual-phase Ni50-xTbxMn30Ga20 (x=0-1) alloys[J]. Materials Science and Engineering: A, 2015, 646, 288- 293.
doi: 10.1016/j.msea.2015.08.080
58 WU Y , WANG J , ZHANG J , et al. Magneto-structural transition and magnetocaloric effect of Ni50-xTbxMn30Ga20 (x=0-1) alloys[J]. Intermetallics, 2017, 89, 100- 104.
doi: 10.1016/j.intermet.2017.05.021
59 GAO L , SUI J H , CAI W , et al. Study of the precipitate phases and martensitic transformation in quaternary Heusler alloys of NiMnGaDy[J]. Solid State Communications, 2009, 149 (5/6): 257- 260.
60 DONG G , TAN C , GAO Z , et al. The effect of ageing on the microstructure and mechanical properties of Ni53Mn23.5Ga18.5Ti5 ferromagnetic shape memory alloy[J]. Scripta Materialia, 2008, 59 (3): 268- 271.
doi: 10.1016/j.scriptamat.2008.02.058
61 陈枫, 佟运祥, 田兵, 等. NiCoMnSn高温形状记忆合金的马氏体相变与显微组织[J]. 稀有金属, 2013, 37 (1): 6- 13.
61 CHEN F , TONG Y X , TIAN B , et al. Martensitic transformation and microstructure of NiCoMnSn high temperature shape memory alloys[J]. Rare Metals, 2013, 37 (1): 6- 13.
62 YAN J L , LI Z Z , CHEN X , et al. Martensitic transition and magnetocaloric properties in Ni45Mn44-xFexSn11 alloys[J]. Journal of Alloys and Compounds, 2010, 506 (2): 516- 519.
doi: 10.1016/j.jallcom.2010.07.076
63 ZHANG H , ZHANG X , QIAN M , et al. Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior[J]. Journal of Alloys and Compounds, 2017, 715, 206- 213.
doi: 10.1016/j.jallcom.2017.04.277
64 CHEN F , SANCHEZ LLAMAZARES J L , SANCHEZ-VALDES C F , et al. Ni-Co-Mn-Sn quaternary alloys: magnetic hysteresis loss reduction and ductility enhancement by iron alloying[J]. Journal of Magnetism and Magnetic Materials, 2019, 485, 351- 357.
doi: 10.1016/j.jmmm.2019.04.100
65 ŁASZCZ A , HASIAK M , KALETA J . Effects of Ti and Gd for Ga substitution on microstructure, magnetic and mechanical properties of polycrystalline Ni-Mn-Ga magnetic shape memory alloy[J]. Journal of Magnetism and Magnetic Materials, 2019, 476, 497- 505.
doi: 10.1016/j.jmmm.2019.01.031
66 VILLA E , VILLA E , MELZI D'ERIL M , et al. The role of γ-phase on the thermo-mechanical properties of NiMnGaFe alloys polycrystalline samples[J]. Journal of Alloys and Compounds, 2018, 763, 883- 890.
doi: 10.1016/j.jallcom.2018.06.028
67 李建国, 郑红星, 马伟增, 等. 超高温度梯度定向凝固NiMnFeGa磁致形状记忆合金[J]. 航空材料学报, 2003, 23 (增刊): 1- 4.
67 LI J G , ZHENG H X , MA W Z , et al. Crystal growth of magnetic shape memory NiMnFeGa alloy under high temperature gradient unidirectional solidification condition[J]. Journal of Aeronautical Materials, 2003, 23 (Suppl): 1- 4.
68 CHEN F , TONG Y X , LI L , et al. Broad first-order magnetic entropy change curve in directionally solidified polycrystalline Ni-Co-Mn-In[J]. Journal of Alloys and Compounds, 2017, 727, 603- 609.
doi: 10.1016/j.jallcom.2017.08.118
69 FENG Y , SUI J H , GAO Z Y , et al. Investigation on martensitic transformation behavior, microstructures and mechanical properties of Fe-doped Ni-Mn-In alloys[J]. Materials Science and Engineering: A, 2009, 507 (1): 174- 178.
70 WU Y , WANG J , JIANG C , et al. Effect of coherent nanoprecipitates on martensitic transformation in Tb-doped NiMnGa melt-spun ribbons[J]. Intermetallics, 2018, 97, 42- 51.
doi: 10.1016/j.intermet.2018.03.012
71 李剋蒙, 陈枫, 郭磊, 等. 稀土Ce对NiMnSn高温形状记忆合金相变和力学性能的影响[EB/OL]. 北京: 中国科技论文在线[2011-08-05]. http://www.paper.edu.cn/releasepaper/content/201108-114.
71 LI K M, CHEN F, GUO L, et al. Effect of the doping of rare earth element Ce on martensitic transformation and mechanical properties of NiMnSn high temperature shape memory alloys[EB/OL]. Beijing: China Science and Technology[2011-08-05]. http://www.paper.edu.cn/releasepaper/content/201108-114.
72 WU Y , WANG X , WANG J , et al. Magneto-structural transition and magnetocaloric effect of melt spinning Ni50Mn29Ga21-xTbx (x=0-1) ribbons[J]. Intermetallics, 2016, 69, 118- 122.
doi: 10.1016/j.intermet.2015.10.004
73 YAN H L , SANCHEZ-VALDES C F , ZHANG Y D , et al. Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50.0Mn35.25In14.75 melt-spun ribbons[J]. Journal of Alloys and Compounds, 2018, 767, 544- 551.
doi: 10.1016/j.jallcom.2018.07.063
[1] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[2] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[3] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[4] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
[5] 衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
[6] 刘艳芬, 张学习, 沈红先, 孙剑飞, 温亚芹, 王欢, 任晓辉, 阴爽. Ni50.1Mn24.1Ga20.3Fe5.5形状记忆合金多晶纤维的双程形状记忆效应[J]. 材料工程, 2021, 49(3): 41-47.
[7] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[8] 信云鹏, 朱知寿, 王新南, 商国强, 祝力伟, 李明兵, 李静, 刘格辰. 应变率对TB17钛合金亚稳β晶粒变形机制的影响[J]. 材料工程, 2020, 48(12): 141-147.
[9] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[10] 李志超, 党宁, 江海涛, 夏振海. 含Cu取向硅钢中第二相粒子析出演变行为研究[J]. 材料工程, 2017, 45(12): 10-16.
[11] 范清松, 杨忠波, 周军, 石明华, 陈鑫, 李中奎. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44(4): 110-118.
[12] 樊俊铃, 郭杏林, 吴承伟. FV520B不锈钢角焊缝接头的组织和断裂机理[J]. 材料工程, 2013, 0(7): 1-5,91.
[13] 胡宽辉, 田德新, 冯冠文, 段小平, 严龙. 热镀锌连续退火工艺对高强IF钢组织和性能的影响[J]. 材料工程, 2012, 0(7): 50-54.
[14] 刘昆鹏, 赵子华, 张峥. 321不锈钢疲劳早期损伤的涡流评估[J]. 材料工程, 2012, 0(11): 61-65.
[15] 刘光明, 康永林, 陈继平, 冯月雪, 周建, 滕华湘. 390MPa级Ti+Nb超低碳高强度BH钢组织性能研究[J]. 材料工程, 2010, 0(4): 5-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn