Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 48-55    DOI: 10.11868/j.issn.1001-4381.2020.000416
  综述 本期目录 | 过刊浏览 | 高级检索 |
水滑石作为润滑油(脂)添加剂的摩擦性能及其影响因素
李桂金1,2, 张忠伦1,2, 白志民3,*()
1 中建材科创新技术研究院(山东)有限公司, 山东 枣庄 277100
2 中国建筑材料科学研究总院有限公司, 北京 100024
3 中国地质大学(北京) 材料科学与工程学院, 北京 100083
Friction performance of hydrotalcite as lubrication oil (grease) additive and its influence factors
Gui-jin LI1,2, Zhong-lun ZHANG1,2, Zhi-min BAI3,*()
1 CNBM Technology Innovation Academy (shandong) Co., Ltd., Zaozhuang 277100, Shandong, China
2 China Building Materials Academy Co., Ltd., Beijing 100024, China
3 School of Materials Science and Technology, China University of Geoscience(Beijing), Beijing 100083, China
全文: PDF(2383 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

水滑石应用于机械摩擦系统,展现出良好的减摩抗磨性能。本文系统总结水滑石作为润滑油(脂)添加剂的摩擦性能及其影响因素,重点分析制备方法、阳离子半径、二价与三价阳离子比例、层间无机阴离子种类、有机阴离子插层、结晶度等因素对水滑石减摩抗磨性能的影响规律与作用机制,明确水滑石润滑材料结构成分设计基本原则与调控方向。基于研究现状,提出应深入加强水滑石润滑材料工业实验验证、水滑石对润滑油(脂)品质影响评价、水滑石与摩擦副表面交互作用基础研究等工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李桂金
张忠伦
白志民
关键词 水滑石减摩抗磨影响因素研究方向    
Abstract

Hydrotalcite applied in mechanical friction system exhibits good friction and wear resistance. Friction performance of hydrotalcite as lubrication oil (grease) additive and its influence factors were summarized systematically in this paper. The mechanism and regulation of preparation methods, cation radius, the ratio of divalent and trivalent cations, the type of inorganic anions between layers, the intercalation of organic anions, crystallinity on the friction reduction and antiwear properties were analyzed comparatively. The basic principle and control directions of the structural composition design of hydrotalcite lubrication materials were clarified. Based on the research status, it was suggested that the industrial test verification of hydrotalcite, the evaluation of the influence of hydrotalcite on the quality of lubricating oil (grease), and the basic research about the interaction between hydrotalcite and the friction surface should be strengthened.

Key wordshydrotalcite    friction reduction and antiwear    influence factor    research direction
收稿日期: 2020-05-08      出版日期: 2021-05-21
中图分类号:  P578.964  
基金资助:国家重点研发计划项目(2017YFB0310700)
通讯作者: 白志民     E-mail: zhimibai@cugb.edu.cn
作者简介: 白志民(1957-), 男, 教授, 博士, 研究方向为工业矿物与岩石材料的综合利用, 联系地址: 北京市海淀区学院路29号中国地质大学(北京)材料科学与工程学院(100083), zhimibai@cugb.edu.cn
引用本文:   
李桂金, 张忠伦, 白志民. 水滑石作为润滑油(脂)添加剂的摩擦性能及其影响因素[J]. 材料工程, 2021, 49(5): 48-55.
Gui-jin LI, Zhong-lun ZHANG, Zhi-min BAI. Friction performance of hydrotalcite as lubrication oil (grease) additive and its influence factors. Journal of Materials Engineering, 2021, 49(5): 48-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000416      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/48
Ion Coordination Spin state Ionic radius/10-1 nm
Zn2+ 6 0.74
Co2+ 6 LS; HS 0.65;0.745
Co3+ 6 LS; HS 0.545;0.61
Ni2+ 6 HS 0.69
Mg2+ 6 0.72
Cu2+ 6 0.73
Al3+ 6 0.535
Ce3+ 6 1.01
La3+ 6 1.032
Table 1  阳离子半径[42]
Experimental condition LDH FCD*/% API*/% Reference
Four ball test,rotary speed 1200 r/min,load 392 N, run time
30 min,dosage 10 g/L
Co-Al-CO3 49.1 33.1 [39]
Four ball test,rotary speed 1200 r/min, load 392 N,run time
60 min, dosage 5 g/L
Mg-Al-NO3
Ni-Al-NO3
Co-Al-CO3
12.9
17.3
22.3
5.0
14.7
26.1
[36]
Gear experiment, load 45 N, rotary speed 2800 r/min, run time 10 h, dosage 10 g/L Ni-Mg-Al-CO3
Cu-Mg-Al-CO3
10.6
8
Air compressor experiment, after the air pressure rises to 20 kPa, run time 30 min, dosage 10 g/L Ni-Mg-Al-CO3
Cu-Mg-Al-CO3
4.1
3.8
[44]
Pin disc test, speed 0.5 m/s, load 10 N, run distance 450 m, dosage 0.5%(mass fraction) Mg-Al-CO3
Zn-Al-CO3
Zn/Mg-Al-CO3
39
26
18
59
29
6
[45]
Table 2  不同二价阳离子水滑石减摩抗磨性能
Experimental condition LDH FCD/% API/% Reference
SRV-1 fretting friction experiment,run time 60 min,vibration frequency 25 Hz,load 150 N,dosage 0.1%(mass fraction) Co-Al-CO3
Co-Al-Cl
Co-Al-NO3
Co-Al-Ace
Co-Al-DS
AF*=0.140
AF=0.117
AF=0.103
AF=0.122
AF=0.105
WV*=33×104 μm3
WV=23×104 μm3
WV=2.5×104 μm3
WV=27×104 μm3
WV=2.5×104 μm3
[32]
Four ball test, rotary speed 1200 r/min, load 147 N, run time 60 min, dosage 0.25%(mass fraction) Mg-Al-CO3
Mg-Al-Cl
PB=549 N
PB=598 N
25.4
37.7
[46]
Ball disc test, run time 30 min, frequency 25 Hz, load 200 N, dosage 1%(mass fraction) Ni-Al-CO3
Ni-Al-DBP
Ni-Al-OBP
Third
Second
First
WV=300×104 μm3
WV=4.2×104 μm3
WV=3.4×104 μm3
[33]
Four ball test, rotary speed 1200 r/min, load 392 N, run time 60 min, dosage 5 g/L Mg-Al/Ce-CO3
Mg-Al/Ce-LA
Mg-Al/Ce-SA
27.2
44.7
27.2
15.9
30.2
16.7
[29]
Four ball test, rotary speed 1200 r/min,load 392 N, run time 60 min,dosage 5 g/L Mg-Al/La-CO3
Mg-Al/La-SDS
16.2
26.1
12.9
16.5
[47]
Four ball test,rotary speed 1200 r/min,load 392 N, run time 60 min,dosage 10 g/L Co-Al-CO3
Co-Al-SDS
49.1
50.7
33.1
17.9
[39]
Four ball test,rotary speed 1200 r/min,load 392 N,run time 60 min,dosage 10 g/L Mg-Al/Ce-CO3
Mg-Al/Ce-SDS
Mg-Al/Ce-SDSO
45.15
34.5
20.89
31.6
16.9
5.1
[37]
Four ball test,rotary speed 1200 r/min,load 392 N, run time 60 min,dosage 5 g/L Ni-Al-NO3
Ni-Al-LA
17.3
9.6
14.7
21.2
[30]
Table 3  不同阴离子水滑石减摩抗磨性能
LDH Preparation method Crystallization situation FCD/% API/% Reference
Mg-Al/Ce-CO3 Nucleation and
crystallization isolation
First
Second
Third
45.15
33.02
35.98
31.6
18.8
18.6
[37]
Ni-Al-Cl Microemulsion Width 19.42 nm, thick
8.59 nm
≈10 [34]
Mg-Al-CO3 Hydrothermal synthesis Average particle size 350 nm 31.4 30.3 [36]
Co-Al-CO3 Hydrothermal synthesis Crystallinity 92.8%,
particle size 150-200 nm
49.1 33.1 [39]
Ni-Al-NO3 Coprecipitation Low crystallinity(XRD result)
particle size 40-60 nm
17.3 14.69 [27]
Mg-Al-NO3 Coprecipitation Low crystallinity(XRD result)
particle size 50-70 nm
14.4 1.73 [38]
Table 4  水滑石结晶度对减摩抗磨的影响
Fig.1  水滑石减摩抗磨机理示意图
1 李长明, 何杉, 卫敏, 等. 水滑石前体法制备金属催化材料的研究进展[J]. 中国科学: 化学, 2016, 46 (4): 333- 341.
1 LI C M , HE S , WEI M , et al. The recent advance in the metal cata-lyst derived from hydrotalcites[J]. Scientia Sinica Chimica, 2016, 46 (4): 333- 341.
2 孟格, 刘军枫, 孙晓明, 等. 水滑石纳米阵列电极在能量储存和转化中的应用[J]. 中国科学: 化学, 2017, 47 (4): 408- 419.
2 MENG G , LIU J F , SUN X M , et al. Layered double hydroxide nanoarrays toward electrochemical energy storage and conversion[J]. Scientia Sinica Chimica, 2017, 47 (4): 408- 419.
3 史翎, 李殿卿, 李素锋, 等. Zn-Mg-Al-CO3 LDHs的结构及其抑烟和阻燃性能[J]. 科学通报, 2005, 50 (4): 327- 330.
doi: 10.3321/j.issn:0023-074X.2005.04.004
3 SHI L , LI D Q , LI S F , et al. Structure, smoke suppression and flame retardancy of Zn-Mg-Al-CO3LDHs[J]. Chinese Science Bulletin, 2005, 50 (4): 327- 330.
doi: 10.3321/j.issn:0023-074X.2005.04.004
4 RAHMAN M T , KAMEDA T , KUMAGAI S , et al. A novel method to delaminate nitrate-intercalated Mg, Al layered double hydroxides in water and application in heavy metals removal from waste water[J]. Chemosphere, 2018, 203, 281- 290.
doi: 10.1016/j.chemosphere.2018.03.166
5 XU M , BI B , XU B B , et al. Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye[J]. Applied Clay Science, 2018, 157, 86- 91.
doi: 10.1016/j.clay.2018.02.023
6 LIU X , WU S P , PANG L , et al. Fatigue properties of layered double hydroxides modified asphalt and its mixture[J]. Advances in Materials Science & Engineering, 2014, 2014, 1- 6.
7 DAI W , KHEIREDDINB , GAO H , et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102, 88- 98.
doi: 10.1016/j.triboint.2016.05.020
8 XIAO H , LIU S . 2D nanomaterials as lubricant additive: a review[J]. Materials & Design, 2017, 135, 319- 332.
9 BAI Z M , YANG N , GUO M , et al. Antigorite: mineralogical characterization and friction performances[J]. Tribology International, 2016, 101, 115- 121.
doi: 10.1016/j.triboint.2016.03.036
10 ZHAO F Y , KASRAI M , SHAM T K , et al. Characterization of tribofilms generated from serpentine and commercial oil using X-ray absorption spectroscopy[J]. Tribology Letters, 2013, 50 (2): 287- 297.
doi: 10.1007/s11249-013-0123-0
11 李桂金, 白志民, 赵平. 蛇纹石对铁基金属摩擦副的减摩修复作用[J]. 硅酸盐学报, 2018, 46 (2): 306- 314.
11 LI G J , BAI Z M , ZHAO P . Antifriction repair function of serpentine on Fe based metal friction pairs[J]. Journal of Chinese Ceramic Society, 2018, 46 (2): 306- 314.
12 高传平, 王燕民, 潘志东. 纳米高岭土作为润滑添加剂的减摩行为[J]. 硅酸盐学报, 2014, 42 (4): 506- 513.
12 GAO C P , WANG Y M , PAN Z D . Friction-reducing behavior of kaolin clay nanoparticles as lubricating additive[J]. Journal of Chinese Ceramic Society, 2014, 42 (4): 506- 513.
13 ZHANG J , GU Y H , LIU J J . Advanced silicate-based lubricant additive induced diamond-like carbon structured restoration layer[J]. Tribology International, 2015, 90, 263- 269.
doi: 10.1016/j.triboint.2015.04.036
14 NAN F , XU Y , XU B , et al. Tribological behaviors and wear mechanisms of ultrafine magnesium aluminum silicate powders as lubricant additive[J]. Tribology International, 2015, 81, 199- 208.
doi: 10.1016/j.triboint.2014.09.006
15 席翔, 夏延秋, 曹正锋. 蒙脱石作为润滑脂添加剂的减摩抗磨性能及机理[J]. 硅酸盐学报, 2017, 45 (8): 1159- 1167.
15 XI X , XIA Y Q , CAO Z F . Friction reducing and anti-wear pro-perties and mechanism of montmorillonite as lubricant additives in lithium complex grease[J]. Journal of Chinese Ceramic Society, 2017, 45 (8): 1159- 1167.
16 RUDENKO P , BANDYOPADHYAY A . Talc as friction reducing additive to lubricating oil[J]. Applied Surface Science, 2013, 276 (7): 383- 389.
17 王进礼, 李立全, 刘超, 等. 黑云母/氯化镧复合粉体的摩擦性能[J]. 硅酸盐学报, 2016, 44 (2): 333- 339.
17 WANG J L , LI L Q , LIU C , et al. Tribological properties of biotite/lanthanum chloride composite powders[J]. Journal of the Chinese Ceramic Society, 2016, 44 (2): 333- 339.
18 杜鹏飞, 陈国需, 宋世远, 等. 白云母微粉作为润滑脂添加剂的摩擦学性能[J]. 硅酸盐学报, 2016, 44 (5): 748- 753.
18 DU P F , CHEN G X , SONG S Y , et al. Tribological properties of muscovite micro-particle as lubricant additives in lithium grease[J]. Journal of the Chinese Ceramic Society, 2016, 44 (5): 748- 753.
19 杨其明, 白志民. 超细蛇纹石粉体的材料特性、摩擦学介入行为及其工业应用[J]. 润滑与密封, 2010, 35 (9): 98- 101.
doi: 10.3969/j.issn.0254-0150.2010.09.024
19 YANG Q M , BAI Z M . The material characteristic and tribological intervention behaviors of super-fine powder and its industrial application[J]. Lubrication Engineering, 2010, 35 (9): 98- 101.
doi: 10.3969/j.issn.0254-0150.2010.09.024
20 杨其明. 金属减摩修复技术及其在铁路内燃机车柴油机上的应用[J]. 中国设备工程, 2007, (9): 59- 61.
doi: 10.3969/j.issn.1671-0711.2007.09.027
20 YANG Q M . Metal antifriction repair technology and its application in diesel engine of railway diesel locomotive[J]. China Plant Engineering, 2007, (9): 59- 61.
doi: 10.3969/j.issn.1671-0711.2007.09.027
21 SANCHEZ C , CHEN Y , PARKINSON D Y , et al. In situ probing of stress-induced nanoparticle dispersion and friction reduction in lubricating grease[J]. Tribology International, 2017, 111, 66- 72.
doi: 10.1016/j.triboint.2017.02.038
22 XU Y , HU E , HU K , et al. Formation of an adsorption film of MoS2, nanoparticles and dioctylsebacate on a steel surface for alleviating friction and wear[J]. Tribology International, 2015, 92, 172- 183.
doi: 10.1016/j.triboint.2015.06.011
23 XIE H , JIANG B , HE J , et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International, 2016, 93, 63- 70.
doi: 10.1016/j.triboint.2015.08.009
24 HUANG Y , YAO Q , QI Y , et al. Wear evolution of monolayer graphene at the macroscale[J]. Carbon, 2017, 115, 600- 607.
doi: 10.1016/j.carbon.2017.01.056
25 BERMAN D , ERDEMIR A , SUMANT A V . Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon, 2013, 54, 454- 459.
doi: 10.1016/j.carbon.2012.11.061
26 BAI Z M , WANG Z Y , ZHANG T G , et al. Synthesis and cha-racterization of Co-Al-CO3 layered double-metal hydroxides and assessment of their friction performances[J]. Applied Clay Science, 2012, 59/60, 36- 41.
doi: 10.1016/j.clay.2012.02.003
27 赵栋, 白志民. 月桂酸插层改性Ni/Al-NO3-LDHs及其对摩擦性能的影响[J]. 硅酸盐学报, 2012, 40 (5): 769- 775.
27 ZHAO D , BAI Z M . Ni/Al-NO3-LDHs intercalated with dodecanoic acid and its tribological characteristics[J]. Journal of the Chinese Ceramic Society, 2012, 40 (5): 769- 775.
28 栾中岳, 白志民, 宋学礼, 等. Mg-Al类水滑石的制备及摩擦性能[J]. 硅酸盐学报, 2013, 41 (5): 679- 684.
28 LUAN Z Y , BAI Z M , SONG X L , et al. Preparation and tribological properties of Mg-Al hydrotalcite-like compounds[J]. Journal of the Chinese Ceramic Society, 2013, 41 (5): 679- 684.
29 LI S , QIN H , ZUO R , et al. Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives[J]. Applied Surface Science, 2015, 353, 643- 650.
doi: 10.1016/j.apsusc.2015.05.091
30 ZHAO D , BAI Z M , ZHAO F Y . Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability[J]. Materials Research Bulletin, 2012, 47 (11): 3670- 3675.
doi: 10.1016/j.materresbull.2012.06.042
31 BAI Z M , WANG Z Y , ZHANG T G , et al. Characterization and friction performances of Co-Al-layered double-metal hydroxides synthesized in the presence of dodecylsulfate[J]. Applied Clay Science, 2013, 75/76 (5): 22- 27.
32 马立民, 侯凯明, 杨志刚, 等. 不同阴离子插层双金属氢氧化物的制备及摩擦学性能研究[J]. 摩擦学学报, 2017, 37 (2): 192- 198.
32 MA L M , HOU K M , YANG Z G , et al. Synthesis of various Co-Al LDH interlayered with different anions and their tribological properties as oil additive[J]. Tribology, 2017, 37 (2): 192- 198.
33 巴召文, 韩云燕, 乔旦, 等. 磷酸酯阴离子插层水滑石作为纳米润滑添加剂的研究[J]. 摩擦学学报, 2018, 38 (4): 4- 13.
33 BA Z W , HAN Y Y , QIAO D , et al. Study of phosphate interlayered LDH as nanolubricant additives[J]. Tribology, 2018, 38 (4): 4- 13.
34 WANG H D , LIU Y H , LIU W , et al. Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives[J]. ACS Applied Materials & Interfaces, 2017, 9 (36): 30891- 30899.
35 WANG H D , LIU Y H , ZHE C , et al. Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives[J]. Science Report, 2016, (6): 22748- 22755.
36 赵栋. 类水滑石减摩材料制备及其减摩机理研究[D]. 北京: 中国地质大学(北京), 2015.
36 ZHAO D. Preparation of hydrotalcite-like anti-friction materials and investigation on its antifriction mechanism[D]. Beijing: China University of Geoscience(Beijing), 2015.
37 张天广. Ce-Mg-Al类水滑石的合成与插层工艺及摩擦性能研究[D]. 北京: 中国地质大学(北京), 2011.
37 ZHANG T G. Preparation, intercalation and study on tribological properties of Ce-Mg-Al layered double hydroxides[D]. Beijing: China University of Geoscience(Beijing), 2011.
38 赵栋, 白志民. 月桂酸插层Mg/Al-NO3-LDH及其摩擦性能评价[J]. 硅酸盐通报, 2012, 31 (4): 91- 96.
38 ZHAO D , BAI Z M . Preparation of Mg/Al-NO3-LDHs intercalated with dodecanoic acid and investigation of its tribological characteristics[J]. Bulletin of the Chinese Ceramic Society, 2012, 31 (4): 91- 96.
39 王振宇. Co-Al水滑石类化合物的制备与摩擦性能的研究[D]. 北京: 中国地质大学(北京), 2011.
39 WANG Z Y. Study on the preparation of Co-Al hydrotalcite-like compounds and tribological properties[D]. Beijing: China University of Geoscience(Beijing), 2011.
40 WANG X B , BAI Z M , ZHAO D , et al. Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite[J]. Applied Surface Science, 2013, 277 (15): 134- 138.
41 郭曼. 蛇纹石-类水滑石复合制备减摩材料的研究[D]. 北京: 中国地质大学(北京), 2013.
41 GUO M. Study on preparation of serpentine/hydrotalcite-like compounds (HTlcs) composite frictional materials[D]. Beijing: China University of Geoscience (Beijing), 2013.
42 SHANNON R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section: A, 1976, 32 (5): 751- 767.
doi: 10.1107/S0567739476001551
43 倪哲明, 潘国祥, 王力耕, 等. 二元类水滑石层板组成、结构与性能的理论研究[J]. 无机化学学报, 2006, 22 (1): 91- 95.
doi: 10.3321/j.issn:1001-4861.2006.01.018
43 NI Z M , PAN G X , WANG L G , et al. Theoretical studies on layer composition, structure and properties of hydrotalcite[J]. Chinese Journal Inorganic Chemistry, 2006, 22 (1): 91- 95.
doi: 10.3321/j.issn:1001-4861.2006.01.018
44 付帆. Cu/Ni-Mg-Al类水滑石的制备与摩擦性能的研究[D]. 北京: 中国地质大学(北京), 2011.
44 FU F. Study on preparation and tribological properties of Cu/Ni-Mg-Al hydrotalcite-like compounds[D]. Beijing: China University of Geoscience(Beijing), 2011.
45 李硕. 锌-镁-铝类水滑石及其煅烧产物摩擦性能与减摩抗磨机理研究[D]. 北京: 中国地质大学(北京), 2017.
45 LI S. Tribological properties and friction-reducing and anti-wear mechanisms of layered double hydroxides and the calcined pro-ducts[D]. Beijing: China University of Geoscience(Beijing), 2017.
46 孙伟超. 镁铝水滑石的氯离子交换及其摩擦学性能的研究[D]. 太原: 太原理工大学, 2014.
46 SUN W C. Chloride anion exchange of MgAl layered double hydroxide and their tribological properties investigation[D]. Taiyuan: Taiyuan University of Technology, 2014.
47 LI S , QIN H J , ZUO R F , et al. Friction properties of La-doped Mg/Al layered double hydroxide and intercalated product as lubricant additives[J]. Tribology International, 2015, 91, 60- 66.
doi: 10.1016/j.triboint.2015.06.012
48 刘洁翔, 张晓光. 阴离子插层镁铝水滑石结构及相互作用的理论研究[J]. 燃料化学学报, 2013, 41 (6): 761- 768.
doi: 10.3969/j.issn.0253-2409.2013.06.019
48 LIU J X , ZHANG X G . Theoretical investigation on the structure of anions intercalated MgAl-layered double hydroxides and the interaction between anions and host layer[J]. Journal of Fuel Chemistry Technology, 2013, 41 (6): 761- 768.
doi: 10.3969/j.issn.0253-2409.2013.06.019
49 岳文. 硅酸盐矿物微粒润滑油添加剂的摩擦学性能与磨损自修复机理[D]. 北京: 中国地质大学(北京), 2009.
49 YUE W. Tribological performance and wear-self-repairing mechanism of silicate particles as lubricating oil additive[D]. Beijing: China University of Geoscience(Beijing), 2009.
50 尹艳丽, 于鹤龙, 王红美, 等. 不同结构层状硅酸盐矿物作为润滑油添加剂的摩擦学性能[J]. 硅酸盐学报, 2020, 48 (2): 299- 308.
50 YIN Y L , YU H L , WANG H M , et al. Tribological performance of phyllosilicate minerals as lubricating oil additives[J]. Journal of the Chinese Ceramic Society, 2020, 48 (2): 299- 308.
[1] 万长鑫, 詹胜鹏, 陈辉, 李银华, 贾丹, 李健, 段海涛. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2): 73-83.
[2] 马帅, 宋驰, 张钊滟, 郑玉婴, 温娜. 钢渣制备水滑石阻燃剂及其在EVA复合发泡材料中的应用[J]. 材料工程, 2021, 49(9): 151-157.
[3] 陈明慧, 朱红梅, 王新林. 激光熔覆制备金属表面非晶涂层研究进展[J]. 材料工程, 2017, 45(1): 120-128.
[4] 宋东福, 王顺成, 周楠, 农登, 郑开宏. Al-Si合金中富铁相形态及其影响因素研究进展[J]. 材料工程, 2016, 44(5): 120-128.
[5] 施伟, 谭毅, 曹作暄. 硬质隔热用炭纤维整体毡的制备工艺研究[J]. 材料工程, 2013, 0(5): 48-52.
[6] 何鹏, 王君, 顾小龙, 林铁松. 纳米填料导电胶研究进展[J]. 材料工程, 2013, 0(12): 1-7.
[7] 关文秀, 姜涛, 陶春虎, 张兵, 刘德林, 胡春燕. 从失效案例分析轴承的早期失效[J]. 材料工程, 2012, 0(12): 14-20.
[8] 冷建成, 徐敏强, 邢海燕. 铁磁构件磁记忆检测技术的研究进展[J]. 材料工程, 2010, 0(11): 88-93.
[9] 胡耀波, 邓娟, 王敬丰, 潘复生, 陈玉安. 高阻尼镁基复合材料研究现状[J]. 材料工程, 2010, 0(1): 89-93,98.
[10] 于湘, 王君, 杨黎晖, 李峻青, 张密林. Zn-Al-[V10O28]6-水滑石在镁合金防腐中的机理研究[J]. 材料工程, 2008, 0(12): 30-33.
[11] 鲁世强, 黄伯云, 贺跃辉, 何双珍, 邓意达. Laves相合金的力学性能[J]. 材料工程, 2003, 0(5): 43-47.
[12] 贾进铎, 张宝松. 新型镍基高温合金中微量硼的分析技术研究[J]. 材料工程, 1998, 0(9): 42-45,48.
[13] 张宝松, 贾进铎. 新型镍基高温合金化学成分分析技术研究[J]. 材料工程, 1996, 0(2): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn