Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 66-74    DOI: 10.11868/j.issn.1001-4381.2020.000011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究
汤桂平, 严倩, 刘洁, 宋波(), 文世峰, 史玉升
华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074
Microstructure and properties of 3D printed agarose and sodium alginate composite hydrogel
Gui-ping TANG, Qian YAN, Jie LIU, Bo SONG(), Shi-feng WEN, Yu-sheng SHI
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(12688 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

组织工程支架要求材料具有良好的生物相容性、相匹配的力学性能,以及利于细胞生长繁殖的形貌和结构。尽管人们已经开发出了大量生物材料用于制备组织工程支架,然而,组织工程支架的成形困难和力学性能差等问题仍然严重限制着其发展。以海藻酸钠为原材料,通过添加琼脂糖增强其力学性能,研究不同比例海藻酸钠/琼脂糖复合凝胶的结构和形貌变化,测试其力学性能。利用直写打印成形复合水凝胶支架,观察复合凝胶中微观孔隙的大小。结果表明:不同比例的海藻酸钠/琼脂糖复合凝胶含水量差异较小,均在90%附近。除了纯琼脂糖凝胶和体积比为1:2的复合凝胶外,其他比例的复合凝胶表面和断面均比较粗糙。琼脂糖能在一定程度上增强复合凝胶,海藻酸钠与琼脂糖的体积比2:1的复合凝胶压缩模量最高,可达0.353 MPa。碳酸钙的分解在复合凝胶中产生了亚微米级的孔隙,因此制备出的复合凝胶具有适合细胞生长繁殖的粗糙表面和微观孔隙。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤桂平
严倩
刘洁
宋波
文世峰
史玉升
关键词 组织工程支架海藻酸钠琼脂糖3D打印力学性能微观孔隙    
Abstract

The biological scaffolds of tissue engineering are required to have good biocompatibility, matched mechanical properties, as well as morphology and microstructure for cell growth and reproduction. Although a large number of biomaterials have been developed to prepare tissue-engineering scaffolds, the forming problems and poor mechanical properties of the scaffolds still seriously limit the development of tissue engineering. The sodium alginate was used as raw material, and its mechanical properties were enhanced by agarose. The structure and morphology of sodium alginate/agarose composite hydrogels with different ratios were studied, the mechanical properties were tested. In addition, the composite hydrogel scaffold was formed by direct ink writing, and the size of the microscopic pores in composite hydrogels were designed and observed. The results show that the composite hydrogels with different ratios have little difference in water content, all around 90%. Apart from the pure agarose gel and the composite gel with a volume ratio of 1:2, the surface and cross section of the composite gel in other ratios are relatively rough. Agarose can enhance the composite gel to a certain extent, and the composite gel with the volume ratio of sodium alginate to agarose of 2:1 has the highest compression modulus, which can reach 0.353 MPa. The decomposition of calcium carbonate created submicron pores in the composite hydrogel, therefore the prepared composite hydrogel has rough surface and micro-pores, which is conducive for cell growth and reproduction.

Key wordstissue engineering scaffold    sodium alginate    agarose    3D printing    mechanical property    micro-scopic pore
收稿日期: 2020-01-03      出版日期: 2021-05-21
中图分类号:  TB324  
基金资助:华中科技大学青年前沿学术团队项目(2017QYTD06);华中科技大学青年前沿学术团队项目(2018QYTD04)
通讯作者: 宋波     E-mail: bosong@hust.edu.cn
作者简介: 宋波(1984-), 男, 教授, 博士, 主要研究方向为3D/4D打印技术及材料与结构设计, 联系地址: 湖北省武汉市洪山区珞喻路1037号华中科技大学快速制造中心(430074), bosong@hust.edu.cn
引用本文:   
汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
Gui-ping TANG, Qian YAN, Jie LIU, Bo SONG, Shi-feng WEN, Yu-sheng SHI. Microstructure and properties of 3D printed agarose and sodium alginate composite hydrogel. Journal of Materials Engineering, 2021, 49(5): 66-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000011      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/66
Fig.1  水凝胶直写打印示意图
Fig.2  海藻酸钠溶液圆二色光谱图  (a)25 ℃时古洛糖醛酸含量计算原理图;(b)不同温度的光谱比较
Fig.3  不同体积比的海藻酸钠与琼脂糖复合凝胶含水量
Fig.4  不同比例海藻酸钠/琼脂糖复合水凝胶红外吸收光谱图
(a)所有试样; (b)体积比为1∶1,1∶0和0∶1的海藻酸钠/琼脂糖复合水凝胶
Fig.5  海藻酸钙扫描电镜图及EDS能谱分析
(a)表面SEM图;(b)EDS能谱分析;(c)断面SEM图
Fig.6  琼脂糖扫描电镜图及EDS能谱分析
(a)表面SEM图;(b)EDS能谱分析;(c)断面SEM图
Fig.7  体积比为2∶1的海藻酸钠/琼脂糖复合凝胶扫描电镜图及EDS能谱分析
(a)表面SEM图;(b)EDS能谱分析;(c)断面SEM图
Position Calcium alginate/μm Agarose/μm Composite hydrogel with a volume ratio of 2∶1/μm
1 26 133 38
2 32 91 41
Table 1  水凝胶的孔隙尺寸
Fig.8  不同体积比海藻酸钠/琼脂糖复合水凝胶的压缩模量
Fig.9  不同直径的针嘴3D打印成形复合水凝胶支架  (a)340 μm;(b)250 μm;(c)210 μm
Fig.10  不同质量比海藻酸钠/碳酸钙复合水凝胶的表面形貌
(a)1∶0;(b)10∶1;(c)5∶1
Fig.11  不同质量比海藻酸钠/碳酸钙复合水凝胶的断面形貌
(a)1∶0;(b)10∶1;(c)5∶1
1 RUDGE C , MATESANZ R , DELMONICO F L , et al. International practices of organ donation[J]. British Journal of Anaesthesia, 2012, 108 (Suppl 1): 48- 55.
2 KHOJASTEH A , BEHNIA H , DASHTI S G , et al. Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature[J]. Journal of Oral and Maxillofacial Surgery, 2012, 70 (4): 972- 982.
doi: 10.1016/j.joms.2011.02.133
3 KHOJASTEH A , BEHNIA H , NAGHDI N , et al. Effects of different growth factors and carriers on bone regeneration: a systematic review[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 116 (6): 405- 423.
doi: 10.1016/j.oooo.2012.01.044
4 SHAYESTEH Y S , KHOJASTEH A , SOLEIMANI M , et al. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 2008, 106 (2): 203- 209.
doi: 10.1016/j.tripleo.2007.12.001
5 SHIEH S J , VACANTI J P . State-of-the-art tissue engineering: from tissue engineering to organ building[J]. Surgery, 2005, 137 (1): 1- 7.
doi: 10.1016/j.surg.2004.04.002
6 GRIFFITH L G , NAUGHTON G . Tissue engineering-current challenges and expanding opportunities[J]. Science, 2002, 295 (5557): 1009- 1014.
doi: 10.1126/science.1069210
7 KHADEMHOSSEINI A , LANGER R . A decade of progress in tissue engineering[J]. Nature Protocols, 2016, 11 (10): 1775- 1781.
doi: 10.1038/nprot.2016.123
8 LEE K Y , MOONEY D J . Alginate: properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37 (1): 106- 126.
doi: 10.1016/j.progpolymsci.2011.06.003
9 SLAUGHTER B V , KHURSHID S S , FISHER O Z , et al. Hydrogels in regenerative medicine[J]. Advanced Materials, 2009, 21 (32/33): 3307- 3329.
10 ZHAO X , LANG Q , YILDIRIMER L , et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering[J]. Advanced Healthcare Materials, 2016, 5 (1): 108- 118.
doi: 10.1002/adhm.201500005
11 NGUYEN D , HAGG D A , FORSMAN A , et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink[J]. Scientific Reports, 2017, 7 (1): 658.
doi: 10.1038/s41598-017-00690-y
12 YANG X , LU Z , WU H , et al. Collagen-alginate as bioink for three-dimensional(3D) cell printing based cartilage tissue engineering[J]. Materials Science and Engineering: C, 2018, 83, 195- 201.
doi: 10.1016/j.msec.2017.09.002
13 LÓPEZ-MARCIAL G R , ZENG A Y , OSUNA C , et al. Agarose-based hydrogels as suitable bioprinting materials for tissue engineering[J]. ACS Biomaterials Science & Engineering, 2018, 4 (10): 610- 3616.
14 张小林, 王兰兰, 翁林, 等. 海藻酸盐医用材料的制备技术及应用现状[J]. 棉纺织技术, 2019, 47 (4): 75- 80.
doi: 10.3969/j.issn.1001-7415.2019.04.020
14 ZHANG X L , WANG L L , WENG L , et al. Preparation technology and application status of alginate medical material[J]. Cotton Textile Technology, 2019, 47 (4): 75- 80.
doi: 10.3969/j.issn.1001-7415.2019.04.020
15 JOHNSON F A , CRAIG D Q M , MERCER A D . Characterization of the block structure and molecular weight of sodium alginates[J]. Journal of Pharmacy and Pharmacology, 1997, 49 (7): 639- 643.
16 VENKATESAN J , BHATNAGAR I , MANIVASAGAN P , et al. Alginate composites for bone tissue engineering: a review[J]. International Journal of Biological Macromolecules, 2015, 72, 269- 281.
doi: 10.1016/j.ijbiomac.2014.07.008
17 WENDT D , JAKOB M , MARTIN I . Bioreactor-based enginee-ring of osteochondral grafts: from model systems to tissue manufacturing[J]. Journal of Bioscience and Bioengineering, 2005, 100 (5): 489- 494.
doi: 10.1263/jbb.100.489
18 任利玲, 冯雪, 马东洋, 等. 不同浓度海藻酸盐凝胶的力学特性及其对软骨细胞增殖能力的影响[J]. 生物医学工程学杂志, 2012, 29 (5): 884- 888.
18 REN L L , FENG X , MA D Y , et al. Mechanical properties of al-ginate hydrogels with different concentrations and their effects on the proliferation chondrocytes in vitro[J]. Journal of Biomedical Engineering, 2012, 29 (5): 884- 888.
19 KUO C K , MA P X . Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1.structure, gelation rate and mechanical properties[J]. Biomaterials, 2001, 22, 511- 521.
doi: 10.1016/S0142-9612(00)00201-5
20 OUWERX C , VELINGS N , MESTDAGH M M , et al. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations[J]. Polymer Gels and Networks, 1998, 6, 393- 408.
doi: 10.1016/S0966-7822(98)00035-5
21 AUGST A D , KONG H J , MOONEY D J . Alginate hydrogels as biomaterials[J]. Macromolecular Bioscience, 2006, 6 (8): 623- 633.
doi: 10.1002/mabi.200600069
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[15] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn