Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 137-143    DOI: 10.11868/j.issn.1001-4381.2020.000435
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超音速微粒轰击对TC11钛合金组织和疲劳性能的影响
武永丽1, 熊毅1,2,*(), 陈正阁3, 查小琴4, 岳赟1, 刘玉亮1, 张金民4, 任凤章1,2
1 河南科技大学 材料科学与工程学院, 河南 洛阳 471023
2 有色金属新材料与先进加工技术省部共建协同创新中心, 河南 洛阳 471023
3 西北核技术研究所激光与物质相互作用国家重点实验室, 西安 710024
4 中国船舶重工集团公司 第七二五研究所, 河南 洛阳 471023
Effect of supersonic fine particle bombardment on microstructure and fatigue properties of TC11 titanium alloy
Yong-li WU1, Yi XIONG1,2,*(), Zheng-ge CHEN3, Xiao-qin ZHA4, Yun YUE1, Yu-liang LIU1, Jin-min ZHANG4, Feng-zhang REN1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 Collaborative Innovation Center of New Nonferrous Metal Materials and Advanced Processing Technology Jointly Established by the Ministry of Science and Technology, Luoyang 471023, Henan, China
3 State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710024, China
4 The 725th Research Institute of China Shipbuilding Industry Corporation, Luoyang 471023, Henan, China
全文: PDF(23103 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用超音速微粒轰击(SFPB)技术对层片组织的TC11钛合金进行表面纳米化处理,对比研究了表面纳米化处理前、后TC11钛合金的室温高周疲劳行为;借助光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)对比分析了高周疲劳断口及断口附近的微观组织形貌。结果表明:经SFPB处理后在钛合金表层产生了30~50 μm厚的纳米层,纳米晶尺寸在5~15 nm左右;疲劳性能得到明显提高,在相同应力级别下的疲劳寿命提高了约8~10倍,疲劳条带宽度变窄,且随着加载级别的降低,疲劳寿命提高的倍数逐渐增加;SFPB前、后疲劳断口均由疲劳源区、裂纹扩展区、瞬断区三部分组成,但SFPB处理后的疲劳源由处理前的表层移至次表层;SFPB处理态试样疲劳加载后表层组织仍为纳米量级,但次表层组织中出现大量的形变孪晶、位错缠结以及少量的形变诱导马氏体组织。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武永丽
熊毅
陈正阁
查小琴
岳赟
刘玉亮
张金民
任凤章
关键词 超音速微粒轰击TC11钛合金表面纳米化高周疲劳微观组织    
Abstract

The high cycle fatigue behavior of TC11 titanium alloy with lamellar structure before and after surface nanocrystallization was studied by supersonic fine particle bombardment (SFPB).The microstructure of the high cycle fatigue fracture and its vicinity were compared and analyzed by means of optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD).The results show that there are 30-50 μm thick nanolayers on the surface of titanium alloy after SFPB treatment, and the size of nanocrystalline is about 5-15 nm.The fatigue performance is improved obviously and the fatigue life is increased about 8-10 times under the same stress level, the fatigue striation width becomes narrow, and the multiple of fatigue life increases gradually with the decrease of loading level.The fatigue fracture surface before and after SFPB treatment consists of the fatigue source zone, the crack propagation zone and the instantaneous fracture zone, but the fatigue source after SFPB treatment moves from the surface layer before treatment to the subsurface.After fatigue loading, the surface microstructure of SFPB treated specimens is still in nanometer scale, but there are a lot of deformation twins, dislocation tangles and a small amount of deformation-induced martensite in the subsurface microstructure.

Key wordssupersonic fine particle bombardment    TC11 titanium alloy    surface nanocrystallization    high cycle fatigue    microstructure
收稿日期: 2020-05-16      出版日期: 2021-05-21
中图分类号:  TG113.25+5  
基金资助:国家自然科学基金资助项目(U1804146);国家自然科学基金资助项目(51801054);河南省高校科技创新人才支持计划项目(17HASTIT026);河南省外国专家与引智项目(HNGD2020009);河南科技大学科技创新团队资助项目(2015XTD006)
通讯作者: 熊毅     E-mail: xy_hbdy@163.com
作者简介: 熊毅(1975-), 男, 教授, 博士, 研究方向为先进结构材料制备及其表面改性, 联系地址: 河南省洛阳市洛龙区开元大道263号河南科技大学(开元校区)材料科学与工程学院, xy_hbdy@163.com
引用本文:   
武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
Yong-li WU, Yi XIONG, Zheng-ge CHEN, Xiao-qin ZHA, Yun YUE, Yu-liang LIU, Jin-min ZHANG, Feng-zhang REN. Effect of supersonic fine particle bombardment on microstructure and fatigue properties of TC11 titanium alloy. Journal of Materials Engineering, 2021, 49(5): 137-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000435      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/137
Al Mo Zr Si Ti
6.50 3.50 1.50 0.30 Bal
Table 1  TC11钛合金的主要化学成分(质量分数/%)
Fig.1  TC11钛合金SFPB前、后的S-N曲线
Fig.2  SFPB前、后的SEM微观组织形貌
(a)双重退火后;(b)SFPB后
Fig.3  SFPB处理态试样疲劳加载前、后的TEM微观组织形貌
(a)疲劳加载前表层;(b)疲劳加载前次表层(100 μm处)(c)疲劳加载后表层;(d)~(f)疲劳加载后次表层(100 μm处)
Fig.4  双重退火态以及SFPB处理态疲劳加载前、后TC11钛合金的XRD图谱
Fig.5  SFPB前、后疲劳断口形貌(σ=500 MPa, N=147270 cycle, N=2025600 cycle)
(a)SFPB前整体形貌图;(b)SFPB后整体形貌图;(c)图(a)位置Ⅰ放大图;(d)图(b)位置Ⅰ放大图;(e)图(a)位置Ⅱ放大图;(f)图(b)位置Ⅱ放大图;(g)图(a)位置Ⅲ放大图;(h)图(b)位置Ⅲ放大图
1 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27 (3): 1- 4.
1 LIU Q M , ZHANG Z H , LIU S F , et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27 (3): 1- 4.
2 KIKUCHI S , NAKAMURA Y , NAMBU K , et al. Formation of a hydroxyapatite layer on Ti-29Nb-13Ta-4.6Zr and enhancement of four-point bending fatigue characteristics by fine particle peening[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2 (3): 227- 234.
doi: 10.1016/j.ijlmm.2019.06.001
3 XIONG J H , LI S K , GAO F Y , et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by GTAW[J]. Materials Science and Engineering: A, 2015, 640, 419- 423.
doi: 10.1016/j.msea.2015.06.022
4 AO N , LIU D X , ZHANG X H , et al. The effect of residual stress and gradient nanostructure on the fretting fatigue behavior of plasma electrolytic oxidation coated Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2019, 811, 1- 11.
5 许良, 黄双君, 回丽, 等. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47 (11): 171- 177.
doi: 10.11868/j.issn.1001-4381.2016.000866
5 XU L , HUANG S J , LI H , et al. Small fatigue crack growth behavior of TB6 titanium alloy[J]. Journal of Materials Engineering, 2019, 47 (11): 171- 177.
doi: 10.11868/j.issn.1001-4381.2016.000866
6 ZHENG H Z , GUO S H , LUO Q H , et al. Effect of shot peening on microstructure, nanocrystallization and microhardness of Ti-10V-2Fe-3Al alloy surface[J]. Journal of Iron and Steel Research International, 2019, 26 (1): 52- 58.
doi: 10.1007/s42243-018-0206-0
7 王筱冬, 张娇. 研磨光整处理Ti-6Al-4V钛合金表面组织及疲劳性能[J]. 机械制造与自动化, 2019, 48 (4): 30- 31.
7 WANG X D , ZHANG J . Research on surface tissue and fatigue properties of Ti-6Al-4V titanium alloy under grinding and finishing[J]. Machine Building and Automation, 2019, 48 (4): 30- 31.
8 蔡振, 张显程. 表面超声滚压Ti-6Al-4V合金多尺度疲劳裂纹扩展行为的影响[D]. 上海: 华东理工大学, 2017.
8 CAI Z, ZHANG X C. Effect of surface ultrasonic rolling on multiscale fatigue crack growth behavior of Ti-6Al-4V alloy[D]. Shanghai: East China University of Science and Technology, 2017.
9 张恭轩, 吴嘉俊, 高宇, 等. TC17钛合金激光冲击强化实验研究[J]. 表面技术, 2018, 47 (3): 96- 100.
9 ZHANG G X , WU J J , GAO Y , et al. Experimental study on laser shock peening of TC17 titanium alloy[J]. Surface Technology, 2018, 47 (3): 96- 100.
10 CHEN Y X , WANG J C , GAO Y K , et al. Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy[J]. International Journal of Fatigue, 2019, 57, 53- 57.
11 LIU C S , LIU D X , ZHANG X H , et al. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process[J]. Journal of Materials Science and Technology, 2019, 35, 1555- 1562.
doi: 10.1016/j.jmst.2019.03.036
12 巴德玛, 马世宁, 李长青, 等. 超音速微粒轰击38CrSi钢表面纳米化的研究[J]. 材料工程, 2006, (12): 3- 7.
doi: 10.3969/j.issn.1001-4381.2006.12.001
12 BA D M , MA S N , LI C Q , et al. Investigation of surface nanocrystallization of 38CrSi steel by SFPB[J]. Journal of Materials Engineering, 2006, (12): 3- 7.
doi: 10.3969/j.issn.1001-4381.2006.12.001
13 李慧敏, 李淼泉, 刘印刚, 等. 钛合金表层机械处理的纳米化组织、力学性能与机理研究进展[J]. 中国有色金属学报, 2015, 25 (3): 642- 651.
13 LI H M , LI M Q , LIU Y G , et al. Research progress in nanocrystalline microstructure, mechanical properties and nanocrystallization mechanism of titanium alloys via surface mechanical treatment[J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (3): 642- 651.
14 范梅香, 熊毅, 陈艳娜, 等. TC11钛合金室温高周疲劳断口及微观组织[J]. 河南科技大学学报(自然科学版), 2019, 40 (1): 6- 11.
14 FAN M X , XIONG Y , CHEN Y N , et al. Fatigue fracture and microstructure of TC11 titanium alloy after high cycle fatigue at room temperature[J]. Journal of Henan University of Science and Technology (Natural Science), 2019, 40 (1): 6- 11.
15 ZHANG X C , ZHANG Y K , LU J Z , et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering: A, 2010, 527 (15): 3411- 3415.
doi: 10.1016/j.msea.2010.01.076
16 NIE X F , HE W F , ZANG S H , et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253, 68- 75.
doi: 10.1016/j.surfcoat.2014.05.015
17 温爱玲, 闫秀侠, 任瑞铭, 等. 高能喷丸时间对TC4疲劳性能的影响[J]. 热加工工艺, 2009, 38 (14): 127- 129.
doi: 10.3969/j.issn.1001-3814.2009.14.037
17 WEN A L , YAN X X , REN R M , et al. Effect of high-energy shot peening time on fatigue performance of TC4 alloy[J]. Hot Working Technology, 2009, 38 (14): 127- 129.
doi: 10.3969/j.issn.1001-3814.2009.14.037
18 赵坤, 王敏, 蔺成效, 等. TC17钛合金自表面纳米化机制及组织演化[J]. 稀有金属材料与工程, 2013, 42 (10): 2048- 2052.
18 ZHAO K , WANG M , LIN C X , et al. Mechanism and nanostructure evolution of surface self-nanocrystallization of TC17[J]. Rare Metal Materials and Engineering, 2013, 42 (10): 2048- 2052.
19 欧阳德来, 鲁世强, 崔霞, 等. TB6钛合金热变形诱导马氏体转变[J]. 中国有色金属学报, 2010, 20 (12): 2307- 2012.
19 OUYANG D L , LU S Q , CUI X , et al. Transformation of deformation-induced martensite in TB6 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (12): 2307- 2012.
20 林翠, 杜楠. 钛合金选用与设计[M]. 北京: 化学工业出版社, 2014: 100- 152.
20 LIN C , DU N . Selection and design of titanium alloys[M]. Beijing: Chemical Industry Press, 2014: 100- 152.
21 闫秀侠. 高能喷丸表面纳米化对TC4合金疲劳性能的影响[D]. 大连: 大连交通大学, 2009.
21 YAN X X. Effect of nanocrystallization in surface layer on fatigue strength of TC4 titanium alloy by high energy shot peening[D]. Dalian: Dalian Jiaotong University, 2009.
22 SUN R J , LI L H , ZHU Y , et al. Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening[J]. Optics and Laser Technology, 2019, 115, 166- 170.
doi: 10.1016/j.optlastec.2019.02.019
23 陈艳娜, 熊毅, 范梅香, 等. TC11钛合金在不同温度下的疲劳断裂分析[J]. 材料热处理学报, 2019, 40 (8): 61- 68.
23 CHEN Y N , XIONG Y , FAN M X , et al. Fatigue fracture analysis of TC11 titanium alloy at different temperatures[J]. Journal of Heat Treatment of Materials, 2019, 40 (8): 61- 68.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[12] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[13] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[14] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[15] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn