Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 157-162    DOI: 10.11868/j.issn.1001-4381.2019.001040
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
ZrO2/Al2O3多孔陶瓷的制备与力学性能
蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰()
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Preparation and mechanical properties of ZrO2/Al2O3 porous ceramics
Hao-ran JIANG, Shuo LIN, Kang-fei ZHANG, Hai-yan WANG, Jia-qi WANG, Xiu-lan HE()
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(9535 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用凝胶-发泡法制备了ZrO2/Al2O3多孔陶瓷,研究了陶瓷浆料的流变性,固相含量对多孔陶瓷坯体显微结构与力学性能的影响,以及烧结助剂MgO含量与多孔陶瓷抗压强度及气孔率之间的关系。结果表明,在分散剂含量为0.4%(质量分数),球磨4 h,pH值为4的条件下,陶瓷浆料的黏度较低,有利于凝胶注模。固相含量增加,坯体气孔率下降。过高的固相含量使浆料流动困难,注模时引入空气导致坯体内形成较大的气孔甚至裂纹,使坯体抗压强度下降。由ZrO2引起的相变增韧及微裂纹增韧可有效改善多孔陶瓷的力学性能。随烧结助剂含量增加,多孔陶瓷气孔支撑体致密化程度增大,气孔率降低,抗压强度明显升高。多孔陶瓷的抗压强度最高达30 MPa。引入适量的ZrO2及烧结助剂,可制备气孔率适中、抗压强度高的多孔陶瓷。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋浩然
林硕
张康飞
王海燕
王佳齐
何秀兰
关键词 ZrO2/Al2O3多孔陶瓷凝胶-发泡法烧结助剂气孔率力学性能    
Abstract

ZrO2/Al2O3porous ceramics were prepared by gel-foaming technique. The rheological property of slurry, the effect of solid content on the microstructure and mechanical property of the porous green bodies and the relationship between the MgO sintering additive content with the compressive strength and porosity of porous ceramics were investigated. The results show when the dispersant content is 0.4%(mass fraction), ball milling time is 4 h and the pH value is 4, the low viscosity is conductive to gelcasting. The porosity of green body reduces with the increase of solid content. The excessive solid content makes the slurry hard to flow, and the big pores and cracks form during gelcasting process, then the compressive strength of green body decreases. The mechanical properties of porous ceramics are improved with the phase transformation and micro-crack toughening induced by the ZrO2. The densification of pore supports increases, the porosity reduces and compressive strength increases with the increase of sintering additive content. The highest compressive strength is 30 MPa. The porous ceramics with appropriate porosity and high compressive strength can be prepared by introducing suitable contents of ZrO2 and sintering additive.

Key wordsZrO2/Al2O3porous ceramic    gel-foaming    sintering additive    porosity    mechanical property
收稿日期: 2019-11-13      出版日期: 2021-05-21
中图分类号:  TQ174.1  
基金资助:黑龙江省大学生创新训练计划项目(201910214124)
通讯作者: 何秀兰     E-mail: hexiulan@hrbust.edu.cn
作者简介: 何秀兰(1973-), 女, 副教授, 博士, 研究方向: 陶瓷材料, 联系地址: 黑龙江省哈尔滨市香坊区林园路4号哈尔滨理工大学(南区)材料学院317(150040), hexiulan@hrbust.edu.cn
引用本文:   
蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰. ZrO2/Al2O3多孔陶瓷的制备与力学性能[J]. 材料工程, 2021, 49(5): 157-162.
Hao-ran JIANG, Shuo LIN, Kang-fei ZHANG, Hai-yan WANG, Jia-qi WANG, Xiu-lan HE. Preparation and mechanical properties of ZrO2/Al2O3 porous ceramics. Journal of Materials Engineering, 2021, 49(5): 157-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001040      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/157
Fig.1  不同固相含量的ZrO2/Al2O3浆料黏度与pH值之间的关系
Mass fraction of dispersant/% Viscosity/(mPa·s)
0.2 2825.3
0.3 1769.8
0.4 1250.5
0.5 1864.1
0.6 2016.4
Table 1  不同分散剂含量的ZrO2/Al2O3陶瓷浆料黏度
Ball milling time/ h Viscosity/(mPa·s)
2 2134.1
3 1852.7
4 1376.8
5 2024.2
6 3156.9
Table 2  不同球磨时间的ZrO2/Al2O3陶瓷浆料黏度
Fig.2  ZrO2/Al2O3多孔陶瓷的XRD图谱
Fig.3  不同固相含量的ZrO2/Al2O3多孔陶瓷坯体的SEM形貌图
(a)15%;(b)25%;(c)30%
Fig.4  不同固相含量的ZrO2/Al2O3多孔陶瓷气孔支撑体的SEM形貌图
(a)15%;(b)25%;(c)30%
Fig.5  不同烧结助剂含量的ZrO2/Al2O3多孔陶瓷SEM形貌图
(a)1%;(b)3%;(c)5%
Fig.6  不同固相含量的ZrO2/Al2O3多孔陶瓷坯体的气孔率和抗压强度
Fig.7  不同烧结助剂含量的ZrO2/Al2O3多孔陶瓷的气孔率和抗压强度
1 谢雨洲, 彭超群, 王小锋, 等. HEMA-TBA凝胶体系制备多孔氧化铝陶瓷[J]. 无机材料学报, 2017, 32 (7): 731- 738.
1 XIE Y Z , PENG C Q , WANG X F , et al. Porous alumina ceramic prepared by HEMA-TBA gelcasting system[J]. Journal of Inorganic Materials, 2017, 32 (7): 731- 738.
2 FEY T , ZIERATH B , GREIL P , et al. Microstructural, mechanical and thermal characterization of alumina gelcast foams manufactrued with the use of agarose as gelling agent[J]. Journal of Porous Materials, 2015, 22, 1305- 1312.
doi: 10.1007/s10934-015-0009-7
3 HOU X H , LIU Z L , LIU Z Q , et al. Porous fibrous ZrO2-mullite ceramics prepared via tert-butyl alcohol-based gel-casting[J]. Ceramics International, 2018, 44 (12): 13580- 13587.
doi: 10.1016/j.ceramint.2018.04.192
4 CHEN R Y , JIA W H , HEI D Q , et al. Toward excellent performance of Al2O3-ZrO2 reticulated porous ceramics: new insights based on residual stress[J]. Ceramics International, 2018, 44 (17): 21478- 21485.
doi: 10.1016/j.ceramint.2018.08.209
5 HAMMEL E C , IGHODARO O L R , OKOLI O I . Processing and properties of advanced porous ceramics: an application based review[J]. Ceramics International, 2014, 40 (10): 15351- 15370.
doi: 10.1016/j.ceramint.2014.06.095
6 LIU R P , XU T T , WAN C A . A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method[J]. Ceramics International, 2016, 42 (2): 2907- 2925.
doi: 10.1016/j.ceramint.2015.10.148
7 GUO X S , ZHOU Z F , MA G L , et al. Effect of forming process on the integrity of pore-gradient Al2O3 ceramic foams by gelcasting[J]. Ceramics International, 2012, 38, 713- 719.
doi: 10.1016/j.ceramint.2011.07.062
8 焦春荣, 陈大明, 仝建峰, 等. Al2O3多孔陶瓷材料发泡注凝技术研究[J]. 陶瓷学报, 2016, 37 (3): 253- 258.
8 JIAO C R , CHEN D M , TONG J F , et al. Foaming and gel-casting of porous alumina ceramics[J]. Journal of Ceramics, 2016, 37 (3): 253- 258.
9 SALOMÃO R , CARDOSO P H , BRANDI J . Gelcasting porous alumina beads of tailored shape and porosity[J]. Ceramics International, 2014, 40, 16595- 16601.
doi: 10.1016/j.ceramint.2014.08.017
10 KHOEE A A N , HABIBOLAHZADEH A , OADS F , et al. Fabrication of tungsten carbide foam through gel-casting process using nontoxic sodium alginate[J]. J Refractory Metals and Hard Materials, 2014, 43 (3): 115- 120.
11 何秀兰, 吴成, 张文正, 等. 海藻酸钠凝胶-发泡法制备Al2O3多孔陶瓷[J]. 硅酸盐学报, 2020, 48 (3): 1- 7.
11 HE X L , WU C , ZHANG W Z , et al. Fabrication of Al2O3 porous ceramic by gel-foaming method with solidum alginate[J]. Journal of the Chinese Ceramics Society, 2020, 48 (3): 1- 7.
12 ZENG J Z , YANG J , WAN W , et al. Effect of Al2O3 particle size on preparation and properties of ZTA ceramics formed by gelcasting[J]. Ceramics International, 2014, 5, 5333- 5338.
13 吴海波, 袁波, 韩建燊, 等. 凝胶注模常温发泡制备氧化铝多孔陶瓷[J]. 材料科学与工艺, 2012, 20 (4): 4- 8.
13 WU H B , YUAN B , HAN J S , et al. Fabrication of porous alumina ceramics by gelcasting together with foaming at room temperature[J]. Materials Science and Technology, 2012, 20 (4): 4- 8.
14 JIA Y , KANNL Y , XIE Z P . Fabrication of alumina green body through gelcasting process using alginate[J]. Materials Letters, 2003, 57, 2530- 2534.
doi: 10.1016/S0167-577X(02)01306-X
15 LIU G , ZHANG D , MEGGS C , et al. Porous Al2O3-ZrO2 composites fabricated by an ice template method[J]. Scripta Materialia, 2010, 62, 466- 468.
doi: 10.1016/j.scriptamat.2009.12.018
16 MOROZOVA L V , KALININA M V , KHAMOVA T V . Porous ceramics based on the ZrO2(Y2O3)-Al2O3 system for filtration membranes[J]. Glass Physics and Chemistry, 2016, 42 (4): 408- 413.
doi: 10.1134/S1087659616040106
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn