1 National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China 2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China 3 General Research Institute for Nonferrous Metals, Beijing 100088, China
Lithium-rich manganese-based cathode material is a promising next-generation lithium-ion battery cathode material, however, it exhibits significant differences in electrochemical performance at different temperatures, which severely limits the application in practical environments. A variety of electrochemical measures were used to characterize the difference in electrochemical performance of lithium-rich material within the temperature range of 5-45℃. The influencing factors of material properties and temperature dependence were analyzed from the perspective of polarization. The results show that the charge/discharge capacity of lithium-rich material decreases with decreasing temperature, which is mainly due to the significant increase in the polarization of the oxygen/manganese ion reaction in the high-voltage and low-voltage ranges with decreasing temperature, resulting in a severe decrease in its capacity contribution.The significantly increased polarization is mainly caused by the poor intrinsic kinetic performance of oxygen/manganese ions, which leading to high apparent activation energy of the charge transfer process. In addition, the participation of oxygen and manganese ions in the charge compensation reaction changes the structure of the material seriously.It induces changes in the composition of the interface film, which increases the apparent activation energy of lithium ion transmission at the interface in the low voltage interval. Moreover, it causes bulk diffusion of lithium ions at the end of the charge and discharge process having higher apparent activation energy. Therefore, improving the oxygen/manganese ion reaction kinetics of lithium-rich material is the main method to enhance its environmental adaptability.
DUNN B , KAMATH H , TARASCON J M . Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334 (6058): 928- 935.
doi: 10.1126/science.1212741
2
YANG Z , ZHANG J , KINTNER-MEYER M C W , et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111 (5): 3577- 3613.
doi: 10.1021/cr100290v
3
ZHAO T , JI R , MENG Y . The role of precipitant in the preparation of lithium-rich manganese-based cathode materials[J]. Chemical Physics Letters, 2019, 730, 354- 360.
doi: 10.1016/j.cplett.2019.06.034
4
DENG B , CHEN Y , WU P , et al. Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2019, 418, 122- 129.
doi: 10.1016/j.jpowsour.2019.02.036
5
HU S , LI Y , CHEN Y , et al. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode[J]. Advanced Energy Materials, 2019, 9 (34): 1901795.
doi: 10.1002/aenm.201901795
LIN J M , ZHAO T L , WANG Y H , et al. Fabrication and electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 coated with Li2ZrO3 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2020, 48 (3): 112- 120.
7
WANG M J , YU F D , SUN G , et al. Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (14): 8302- 8314.
doi: 10.1039/C9TA00783K
8
BAO L , YANG Z , CHEN L , et al. The effects of trace Yb doping on the electrochemical performance of Li-rich layered oxides[J]. ChemSusChem, 2019, 12 (10): 2294- 2301.
doi: 10.1002/cssc.201900226
9
WU Z L , XIE H , LI Y , et al. Li1.2Ni0.25Mn0.55O2: a high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure[J]. Journal of Alloys and Compounds, 2020, 827, 154202.
doi: 10.1016/j.jallcom.2020.154202
10
JIANG X , WANG Z , ROONEY D , et al. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode[J]. Electrochimica Acta, 2015, 160, 131- 138.
doi: 10.1016/j.electacta.2015.02.061
HUANG X K , SHAO Z C , CHANG Z H , et al. Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode[J]. Journal of Materials Engineering, 2019, 47 (8): 13- 21.
12
YU C , WANG H , GUAN X , et al. Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x) LiMn1/3Ni1/3Co1/3O2 (x=0.1, 0.2, 0.3, 0.4) at different temperatures[J]. Journal of Alloys and Compounds, 2013, 546, 239- 245.
doi: 10.1016/j.jallcom.2012.08.026
13
VIVEKANANTHA M , SENTHIL C , KESAVAN T , et al. Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: influence of temperature over structural and electrochemical properties[J]. Electrochimica Acta, 2019, 317, 398- 407.
doi: 10.1016/j.electacta.2019.05.095
14
KOU J , CHEN L , SU Y , et al. The role of cobalt content in improving low temperature performance of layered lithium-rich cathode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (32): 17910- 17918.
15
YU H , WANG Y , ASAKURA D , et al. Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 'composite' layered cathode material for lithium-ion batteries[J]. RSC Advances, 2012, 2 (23): 8797- 8807.
doi: 10.1039/c2ra20772a
16
YANG S , YAN B , WU J , et al. Temperature-dependent lithium-ion diffusion and activation energy of Li1.2Co0.13Ni0.13Mn0.54O2thin-film cathode at nanoscale by using electrochemical strain microscopy[J]. ACS Applied Materials & Interfaces, 2017, 9 (16): 13999- 14005.
17
CUI S , WEI Y , LIU T , et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery[J]. Advanced Energy Materials, 2016, 6 (4): 1501309.
doi: 10.1002/aenm.201501309
18
YABUUCHI N , YOSHII K , MYUNG S T , et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133 (12): 4404- 4419.
doi: 10.1021/ja108588y
19
THACKERAY M M , KANG S H , JOHNSON C S , et al. Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J]. Electrochemistry Communications, 2006, 8 (9): 1531- 1538.
doi: 10.1016/j.elecom.2006.06.030
20
SATHIYA M , ROUSSE G , RAMESHA K , et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials, 2013, 12 (9): 827- 835.
doi: 10.1038/nmat3699
21
HONG J , LIM H D , LEE M , et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24 (14): 2692- 2697.
doi: 10.1021/cm3005634
22
ZHU G , WEN K , LV W , et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300, 29- 40.
doi: 10.1016/j.jpowsour.2015.09.056
23
WANG M , LUO M , CHEN Y , et al. Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT[J]. Journal of Alloys and Compounds, 2017, 696, 907- 913.
doi: 10.1016/j.jallcom.2016.12.085
24
WEPPNER W , HUGGINS R A . Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. Journal of the Electrochemical Society, 1977, 124 (10): 1569- 1578.
doi: 10.1149/1.2133112
25
YAMADA Y , IRIYAMA Y , ABE T , et al. Kinetics of electrochemical insertion and extraction of lithium ion at SiO[J]. Journal of the Electrochemical Society, 2010, 157 (1): A26- A30.
doi: 10.1149/1.3247598
26
ZHANG J N , LI Q , WANG Y , et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode[J]. Energy Storage Materials, 2018, 14, 1- 7.
doi: 10.1016/j.ensm.2018.02.016
27
ZHAO E , ZHANG M , WANG X , et al. Local structure adaptability through multi cations for oxygen redox accommodation in Li-rich layered oxides[J]. Energy Storage Materials, 2020, 24, 384- 393.
doi: 10.1016/j.ensm.2019.07.032
28
LU P , LI C , SCHNEIDER E W , et al. Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118 (2): 896- 903.
doi: 10.1021/jp4111019
29
JOW T R , ALLEN J L , MARX M , et al. Electrolytes, SEI and charge discharge kinetics of Li-ion batteries[J]. ECS Transactions, 2010, 25 (36): 3- 12.
30
ASSAT G , FOIX D , DELACOURT C , et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8 (1): 1- 12.
doi: 10.1038/s41467-016-0009-6
31
Van der Ven A , CEDER G , ASTA M , et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Physical Review B, 2001, 64 (18): 184307- 184324.
doi: 10.1103/PhysRevB.64.184307
32
MOHANTY D , KALNAUS S , MEISNER R A , et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. Journal of Power Sources, 2013, 229, 239- 248.
doi: 10.1016/j.jpowsour.2012.11.144
33
HUA W , CHEN M , SCHWARZ B , et al. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides[J]. Advanced Energy Materials, 2019, 9 (8): 1803094.
doi: 10.1002/aenm.201803094
34
NAYAK P K , GRINBLAT J , LEVI M , et al. Structural and electrochemical evidence of layered to spinel phase transformation of Li and Mn rich layered cathode materials of the formulae xLi[Li1/3Mn2/3]O2·(1-x) LiMn1/3Ni1/3Co1/3O2(x=0.2, 0.4, 0.6) upon cycling[J]. Journal of the Electrochemical Society, 2014, 161 (10): A1534- A1547.
doi: 10.1149/2.0101410jes
35
JIANG W , YIN C , XIA Y , et al. Understanding the discrepancy of defect kinetics on anionic redox in lithium-rich cathode oxides[J]. ACS Applied Materials & Interfaces, 2019, 11 (15): 14023- 14034.
36
SHI J L , XIAO D D , ZHANG X D , et al. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries[J]. Nano Research, 2017, 10 (12): 4201- 4209.
doi: 10.1007/s12274-017-1489-3