Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 167-174    DOI: 10.11868/j.issn.1001-4381.2020.000654
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
具有可逆润湿性Bi2O3涂层在抗菌和油水分离中的应用
余芳, 胡晓婧, 唐其金, 夏雨飘, 吕中, 杨浩
武汉工程大学 环境生态与生物工程学院, 武汉 430205
Antibacterial and oil-water separation applications of Bi2O3 coating with reversible wettability
YU Fang, HU Xiao-jing, TANG Qi-jin, XIA Yu-piao, LYU Zhong, YANG Hao
School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
全文: PDF(15444 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 具有特殊润湿性材料的应用是近年来研究的热点。疏水改性的Bi2O3涂层在紫外-可见光光照和暗室存储的条件下可以实现超疏水-超亲水的可逆转换,本工作研究了在不同润湿性条件下Bi2O3涂层在抗菌和油水分离中的应用。结果表明,超疏水表面对大肠杆菌和金黄色葡萄球菌具有良好的抗细菌黏附作用,而超亲水表面则表现出选择性的抗菌活性。在油水分离方面,超疏水表面可以阻隔水,使油通过滤网,分离效率达93%以上,而超亲水表面在预润湿处理后可以阻隔油,使水通过滤网。因而具有可逆润湿性Bi2O3涂层可作为一种智能的抗菌油水分离膜材料,在油水分离领域具有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余芳
胡晓婧
唐其金
夏雨飘
吕中
杨浩
关键词 超疏水超亲水可逆润湿Bi2O3抗菌涂层油水分离    
Abstract:The application of materials with special wettability is a hot research topic in recent years. It is reported that Bi2O3 coating with hydrophobic modification could achieve the reversible conversion of superhydrophobicity to superhydrophilicity under UV-visible light irradiation and dark storage. Based on this finding, the application of Bi2O3 coating in antibacterial and oil-water separation under different wettability was studied. The results show that superhydrophobic surface exhibits good bacterial anti-adhesion effect against E.coli and S.aureus, while superhydrophilic surface shows selectively antibacterial activity. In terms of oil-water separation, the superhydrophobic surface can block water and allow oil pass through the filter with the separation efficiency more than 93%, while the superhydrophilic surface can block oil and allow water pass through the filter after pre-wetting treatment. Therefore, Bi2O3 coating with reversible wettability can be used as an intelligent antibacterial membrane material for oil-water separation, which has potential application in the field of oil-water separation.
Key wordssuperhydrophobicity    superhydrophilicity    reversible wettability    Bi2O3    antibacterial coating    oil-water separation
收稿日期: 2020-07-20      出版日期: 2021-09-17
中图分类号:  TB34  
  O647.5  
基金资助:湖北高校2019年省级大学生创新创业训练计划项目(S201910490072);武汉工程大学第十四期大学生校长基金项目(2019172)
通讯作者: 杨浩(1981-),男,教授,博士,主要从事功能界面材料的制备与应用研究,联系地址:湖北省武汉市东湖新技术开发区光谷一路206号武汉工程大学环境生态与生物工程学院(430205),E-mail:hyang@wit.edu.cn     E-mail: hyang@wit.edu.cn
引用本文:   
余芳, 胡晓婧, 唐其金, 夏雨飘, 吕中, 杨浩. 具有可逆润湿性Bi2O3涂层在抗菌和油水分离中的应用[J]. 材料工程, 2021, 49(9): 167-174.
YU Fang, HU Xiao-jing, TANG Qi-jin, XIA Yu-piao, LYU Zhong, YANG Hao. Antibacterial and oil-water separation applications of Bi2O3 coating with reversible wettability. Journal of Materials Engineering, 2021, 49(9): 167-174.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000654      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/167
[1] KUNDUA P, MISHRA I M. Treatment and reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by different processes and technologies: a state-of-the-art review[J]. Reviews in Chemical Engineering, 2019, 35(1): 73-108.
[2] YU L, HAN M, HE F. A review of treating oily wastewater[J]. Arabian Journal of Chemistry, 2017, 10: 1913-1922.
[3] 王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2020, 40(1):451-462. WANG C Q, ZHANG X H, NING P G, et al. Research advances and perspective on treatment processes for oily wastewater[J]. Chemical Industry and Engineering Progress, 2020, 40(1):451-462.
[4] TANUDJAJA H J, HEJASE C A, TARABARA V V, et al. Membrane-based separation for oily wastewater:a practical perspective[J]. Water Research, 2019, 156: 347-365.
[5] HUANG S L, RAS R H A, TIAN X L. Antifouling membranes for oily wastewater treatment:interplay between wetting and membrane fouling[J]. Current Opinion in Colloid & Interface Science, 2018, 36: 90-109.
[6] 左继浩, 陈嘉慧, 文秀芳, 等. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458. ZUO J H, CHEN J H, WEN X F, et al. Advanced materials for separation of oil/water emulsion[J]. Progress in Chemistry, 2019, 31(10): 1440-1458.
[7] 张锦山, 董季玲, 武伟, 等. 特殊浸润性油水分离材料的研究进展[J]. 功能材料, 2019, 50(12): 12041-12050. ZHANG J S, DONG J L, WU W, et al. Research progress on special infiltrating oil-water separation materials[J]. Journal of Functional Materials, 2019, 50(12): 12041-12050.
[8] GE M Z, CAO C Y, HUANG J Y, et al. Rational design of materials interface at nanoscale towards intelligent oil-water separation[J]. Nanoscale Horizons, 2018, 3(3): 235-260.
[9] 曾新娟, 王丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86. ZENG X J, WANG L, PI P H, et al. Development and research of special wettability materials for oil /water separation[J]. Progress in Chemistry, 2018, 30(1): 73-86.
[10] GE J L, ZHANG J C, WANG F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2017, 5(2):497-502.
[11] SU C P, YANG H, SONG S, et al. A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation[J]. Chemical Engineering Journal, 2017, 309: 366-373.
[12] CHENG Y Y, BARRAS A, LU S X, et al. Fabrication of superhydrophobic/superoleophilic functionalized reduced graphene oxide/polydopamine/PFDT membrane for efficient oil/water separation[J]. Separation and Purification Technology, 2020, 236: 116240.
[13] LIN X, LU F, CHEN Y N, et al. Electricity-induced switchable wettability and controllable water permeation based on 3D copper foam[J]. Chemical Communications, 2015, 51(90): 16237-16240.
[14] CAI Y H, CHEN D Y, LI N J, et al. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation[J]. Journal of Membrane Science, 2018, 555: 69-77.
[15] 简绍菊, 吴敬林, 何敏慧, 等. 太阳光活性Ce/Bi2O3生物质模板法制备及其光催化性能[J]. 化工新型材料, 2019, 47(9): 237-240. JIAN S J, WU J L, HE M H, et al. Ce/Bi2O3 nanocomposite synthesized with bamboo straw as biological template and its photocatalytic performance in sunlight[J]. New Chemical Materials, 2019, 47(9): 237-240.
[16] YANG H, HU X J, SU C P, et al. Reversibly photo-switchable wettability of stearic acid monolayer modified bismuth-based micro-/nanomaterials[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 31666-31674.
[17] QIN F, ZHAO H P, LI G F, et al. Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis[J]. Nanoscale, 2014, 6(10): 5402-5409.
[18] LIANG D H, LU Z, YANG H, et al. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3958-3968.
[19] WANG S L, WU J, YANG H, et al. Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen streptococcus mutans[J]. Journal of Materials Science-Materials in Medicine, 2017, 28(1): 23.
[20] YANG H, PI P H, YANG Z R, et al. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid[J]. Applied Surface Science, 2016, 388: 268-273.
[21] LIU H, LUO M, HU J C, et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance[J]. Applied Catalysis B, 2013, 140: 141-150.
[22] SU C P, LU Z, ZHAO H P, et al. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity[J]. Applied Surface Science, 2015, 353: 735-743.
[23] SU C P, YANG H, ZHAO H P, et al. Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water[J]. Chemical Engineering Journal, 2017, 330: 423-432.
[24] SUBHADARSHINI S, SINGH R, GOSWAMI D K, et al. Electrodeposited Cu2O nanopetal architecture as a superhydrophobic and antibacterial surface[J]. Langmuir, 2019, 35(52): 17166-17176.
[25] SONG S, YANG H, ZHOU C L, et al. Underwater superoleophobic mesh based on BiVO4 nanoparticles with sunlight-driven self-cleaning property for oil/water separation[J]. Chemical Engineering Journal, 2017, 320: 342-351.
[1] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[2] 何志伟, 沈子航, 邱焕逸, 陈家豪, 梁立军, 王建均. 铝基防冰表面的研究进展[J]. 材料工程, 2021, 49(9): 41-50.
[3] 高朝卿, 王晨, 陈胤伯, 尚胜艳, 陈菲, 马海涛, 王云鹏. 自组装Cu6Sn5超疏水冶金结合界面的构筑及其在铜缓蚀中的应用[J]. 材料工程, 2021, 49(8): 120-126.
[4] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[5] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[6] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[7] 占彦龙, 李文, 李宏, 胡良云. 氧化还原法制备超疏水表面及其防覆冰性能[J]. 材料工程, 2019, 47(1): 58-63.
[8] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[9] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[10] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[11] 谭娜, 邢志国, 王海斗, 王晓丽, 金国, 徐滨士. 基于仿生原理的几何构型及其功能性的研究进展[J]. 材料工程, 2018, 46(1): 133-140.
[12] 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65.
[13] 蒋晓, 郭瑞光, 唐长斌. 硬脂酸改性镁合金铈钒转化膜的制备与性能[J]. 材料工程, 2017, 45(5): 13-19.
[14] 郑顺丽, 李澄, 项腾飞, 胡玮, 丁诗炳, 王晶, 刘盼金. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10): 71-78.
[15] 梁银, 李朋, 裴旺, 段晋辉, 黄峰, 赵昆渝. 阳极氧化疏松钛膜制备高光催化活性的透明TiO2纳米多孔涂层[J]. 材料工程, 2016, 44(7): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn