Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 15-24    DOI: 10.11868/j.issn.1001-4381.2021.000524
  搅拌摩擦焊接专栏 本期目录 | 过刊浏览 | 高级检索 |
碳纤维增强树脂基复合材料与铝/镁合金连接研究进展
金启豪1,2, 陈娟1,2, 彭立明1,2, 李子言1,2, 阎熙1,2, 李春曦1,2, 侯城成1,2, 袁铭扬1,2
1. 上海交通大学 材料科学与工程学院 轻合金精密成型国家工程研究中心, 上海 200240;
2. 上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室, 上海 200240
Research progress in joining of carbon fiber-reinforced polymer composites and aluminum/magnesium alloys
JIN Qihao1,2, CHEN Juan1,2, PENG Liming1,2, LI Ziyan1,2, YAN Xi1,2, LI Chunxi1,2, HOU Chengcheng1,2, YUAN Mingyang1,2
1. Light Alloy Net Forming National Engineering Research Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2. The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(11388 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 运载工具的轻量化是解决当前能源危机和环境问题的重要手段之一,得到国内外学者的高度重视。碳纤维增强树脂基(carbon fiber-reinforced polymer,CFRP)复合材料和以铝镁为代表的轻合金具有一系列优异的力学性能与加工特性,是极具应用前景的轻量化材料,实现这两种材料之间的有效连接,成为当下研究的热点。然而由于异种材料之间理化性能差异较大,在生产过程中混合应用多种轻量化材料仍面临巨大挑战。本文通过对胶接、机械紧固、搅拌摩擦及其变种工艺连接技术的研究进展、优缺点、发展趋势进行汇总分析,考察不同连接方式下获得接头的微观形貌,总结了CFRP与铝镁轻合金搅拌摩擦连接的三种机理包括宏观锚定、微观机械嵌合与化学键连接。最后,基于以上三种连接机理,指出进一步提升混合接头性能的关键在于增大金属母材表面粗糙度,增加熔融高分子面积和采用混合连接工艺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金启豪
陈娟
彭立明
李子言
阎熙
李春曦
侯城成
袁铭扬
关键词 轻量化异种材料连接碳纤维增强树脂基复合材料铝/镁合金搅拌摩擦焊    
Abstract:The lightweight of vehicles is one of the important means to solve the energy crisis and environmental problems, which has been paid great attention by scholars at home and abroad.Carbon fiber-reinforced polymer (CFRP) composites and light alloys such as aluminum and magnesium alloys have a series of excellent mechanical properties and processing performance, representing lightweight materials with great application prospects. It has become a hot research topic to realize the effective joining between the CFRP and aluminum/magnesium alloys which are the promising lightweight materials. However, due to the significant differences in physical and chemical properties between these dissimilar materials, the mixed application of a variety of lightweight materials in the production process is still facing great challenges.The research progress, advantages and disadvantages, and development trend of bonding, mechanical fastening, friction stir welding and its variants were summarized and analyzed. The micro morphology of joints obtained under different bonding methods was investigated. Three mechanisms of friction stir joining between CFRP and aluminum/magnesium light alloys were preliminarily summarized through investigating the micro morphology of joints, including macro anchoring, micro mechanical chimerism and chemical bonding. Finally, based on the above joining mechanism, it is pointed out that the key to further improving the performance of hybrid joints is to increase the surface roughness of the base metal, increase the area of the molten polymer and adopt the hybrid joining techniques.
Key wordslightweight    dissimilar materials joining    carbon fiber-reinforced polymer composites    aluminum/magnesium alloy    friction stir welding
收稿日期: 2021-06-03      出版日期: 2022-01-19
中图分类号:  TG441.2  
基金资助:国家重点研发计划项目(2016YFB0301005);宁波市科技创新2025重大专项(2019B10102)
通讯作者: 陈娟(1983—),女,副研究员,博士,主要从事搅拌摩擦焊接技术研究,联系地址:上海市闵行区东川路800号材料B楼(200240),E-mail: juanchen@sjtu.edu.cn     E-mail: juanchen@sjtu.edu.cn
引用本文:   
金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
JIN Qihao, CHEN Juan, PENG Liming, LI Ziyan, YAN Xi, LI Chunxi, HOU Chengcheng, YUAN Mingyang. Research progress in joining of carbon fiber-reinforced polymer composites and aluminum/magnesium alloys. Journal of Materials Engineering, 2022, 50(1): 15-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000524      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/15
[1] QIN X, JIANG S, LIU J. Discussion on the connection technology of lightweight materials for electric vehicles[J]. Auto Manufacturing Engineer, 2017(11): 55-58. 覃鑫, 江崧, 刘建. 电动汽车轻质材料连接工艺的探讨[J]. 汽车工艺师, 2017(11): 55-58.
[2] KULEKCI M K. Magnesium and its alloys applications in automotive industry[J]. The International Journal of Advanced Ma-nufacturing Technology, 2008, 39(9/10): 851-865.
[3] QUAN G, LI R, GU X, et al. Magnesium alloys-new materials for high-speed train with reduced vibration and noise[C]//Proceedings of the 1st International Workshop on High-Speed and Intercity Railways. Berlin, Heidelberg: Springer, 2012: 349-355.
[4] YANG Y D. Constitutive models of magnesium alloys and the application of lightweight vehicle frontal structure[D]. Guangzhou: South China University of Technology, 2018. 杨越东. 轻质镁合金材料本构模型及汽车前端结构轻量化应用研究[D]. 广州: 华南理工大学, 2018.
[5] CHEN X B, ZHANG B Y, XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28(6): 2-12. 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6): 2-12.
[6] CHEN Y, GE E D, FU Y C, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 301-316. 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2): 301-316.
[7] LIN D C, PAN D, GAO J, et al. Application of carbon fiber composite materials in aerospace[J]. Fiber Reinforced Plastics, 2007(1): 18-28. 林德春, 潘鼎, 高健, 等. 碳纤维复合材料在航空航天领域的应用[J]. 玻璃钢, 2007(1): 18-28.
[8] HUGHES J. The carbon fibre/epoxy interface—a review[J]. Composites Science and Technology, 1991, 41(1): 13-45.
[9] ZENG H M. Resin matrix composite interface engineering[M]. Beijing: Tsinghua University Press, 1990. 曾汉民. 树脂基复合材料界面工程[M]. 北京: 清华大学出版社, 1990.
[10] TANG P Z. Composite material and application technology[M]. Chongqing: Chongqing University Press, 1998. 汤佩钊. 复合材料及其应用技术[M]. 重庆: 重庆大学出版社, 1998.
[11] AMANCIO-FILHO S T, BUENO C, dos SANTOS J F, et al. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures[J]. Materials Science and Engineering: A, 2011, 528(10/11): 3841-3848.
[12] GOUSHEGIR S M, dos SANTOS J F, AMANCIO-FILHO S T. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance[J]. Materials & Design, 2014, 54: 196-206.
[13] POCIOUS A V. Adhesion and adhesives technology: an introduction[M]. Munich: Carl Hanser Verlag GmbH Co KG, 2021.
[14] YANG X L. The mechanical properties of adhesive bonded joints for lightweight automotives[D]. Dalian: Dalian University of Technology, 2014. 杨晓莉. 汽车轻量化异种材料胶接接头力学性能研究[D]. 大连: 大连理工大学, 2014.
[15] KAH P, SUORANTA R, MARTIKAINEN J, et al. Techniques for joining dissimilar materials: metals and polymers[J]. Reviews on Advanced Materials Science, 2014, 36(2): 152-164.
[16] ZHANG K, YANG Z, LI Y. A method for predicting the curing residual stress for CFRP/Al adhesive single-lap joints[J]. International Journal of Adhesion and Adhesives, 2013, 46: 7-13.
[17] BHANDARI V B. Introduction to machine design[M]. New York: Tata McGraw-Hill Education, 2013.
[18] GRANDT A F Jr. Materials degradation and fatigue in aerospace structures[R]. West Lafayette: Purdue University, 1997.
[19] SCATTINA A, RONCATO D, BELINGARDI G, et al. Investigation of creep phenomenon on composite material for bolt connections[J]. Composite Structures, 2015, 134: 378-383.
[20] CACCESE V, MEWER R, VEL S S. Detection of bolt load loss in hybrid composite/metal bolted connections[J]. Engineering Structures, 2004, 26(7): 895-906.
[21] HOLLAWAY L. Handbook of polymer composites for engineers[M]. England: Woodhead Publishing Ltd, 1994.
[22] da SILVA L F, ÖCHSNER A, ADAMS R D. Handbook of adhesion technology[M]. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
[23] SETTINERI L, ATZENI E, IPPOLITO R. Self piercing riveting for metal-polymer joints[J]. International Journal of Material Forming, 2010, 3(1): 995-998.
[24] MARANNANO G, ZUCCARELLO B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints[J]. Composites Part B, 2015, 71: 28-39.
[25] THOMAS W, NICHOLAS E, NEEDHAM J, et al. GB patent application: 9125978.8[P]. 1991-12-08.
[26] MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R, 2005, 50(1/2): 1-78.
[27] RHODES C, MAHONEY M, BINGEL W, et al. Effects of friction stir welding on microstructure of 7075 aluminum[J]. Scripta Materialia, 1997, 36(1): 69-75.
[28] SORENSON C D, NELSON T W, STRAND S, et al. Joining of thermoplastics with friction stir welding[C]//2nd International Friction Stir Welding Symposium. Gothenburg, Sweden: 2IFSWS, 2000: 136-145.
[29] RATANATHAVORN W, MELANDER A. Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding[J]. Science and Technology of Welding and Joining, 2015, 20(3): 222-228.
[30] SHAHMIRI H, MOVAHEDI M, KOKABI A. Friction stir lap joining of aluminium alloy to polypropylene sheets[J]. Science and Technology of Welding and Joining, 2017, 22(2): 120-126.
[31] HUANG Y, MENG X, XIE Y, et al. Joining of carbon fiber reinforced thermoplastic and metal via friction stir welding with co-controlling shape and performance[J]. Composites Part A, 2018, 112: 328-336.
[32] WANG H, HAO X, ZHOU H, et al. Study on ultrasonic vibration-assisted adhesive bonding of CFRP joints[J]. Journal of Adhesion Science and Technology, 2016, 30(17): 1842-1857.
[33] REN D X, LIU L M, LI Y F. Investigation on overlap joining of AZ61 magnesium alloy: laser welding, adhesive bonding, and laser weld bonding[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(1/4): 195-204.
[34] WANG H Y, LIU L M. Analysis of the influence of adhesives in laser weld bonded joints[J]. International Journal of Adhesion and Adhesives, 2014, 52: 77-81.
[35] WANG H Y, ZHANG Z D, LIU L M. The effect of galvanized iron interlayer on the intermetallics in the laser weld bonding of Mg to Al fusion zone[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 351-357.
[36] WANG H Y, REN D X, LIU L M. The microstructures investigation in laser welding bonding AZ31B Mg alloy to 6061 Al alloy joint[J]. China Welding, 2013, 22(1): 21-26.
[37] LIU L M, WANG H Y. Microstructure and properties analysis of laser welding and laser weld bonding Mg to Al joints[J]. Metallurgical and Materials Transactions A, 2011, 42(4): 1044-1050.
[38] LIU L M, REN D X, LI Y F. Static mechanics analyses of different laser weld bonding structures in joining AZ61 Mg alloy[J]. International Journal of Adhesion and Adhesives, 2011, 31(7): 660-665.
[39] WANG J W, LIU Z X, SHANG Y, et al. Self-piercing riveting of wrought magnesium AZ31 sheets[J]. Journal of Manufacturing Science and Engineering, 2011, 133(3): 031009.
[40] EASTON M, BEER A, BARNETT M, et al. Magnesium alloy applications in automotive structures[J]. JOM, 2008, 60(11): 57-62.
[41] DURANDET Y, DEAM R, BEER A, et al. Laser assisted self-pierce riveting of AZ31 magnesium alloy strips[J]. Materials & Design, 2010, 31(Suppl 1): 13-16.
[42] DENG L, LOU M, LI Y B, et al. Self-piercing riveting device and method for ultra-high-strength steel and light metal: CN104384422A[P]. 2015-03-04. 邓琳, 楼铭, 李永兵, 等. 面向超高强度钢与轻金属的自冲铆接装置及方法: CN104384422A[P]. 2015-03-04.
[43] LOU M, LI Y B, LI Y T, et al. Behavior and quality evaluation of electroplastic self-piercing riveting of aluminum alloy and advanced high strength steel[J]. Journal of Manufacturing Science and Engineering, 2013, 135(1): 011005.
[44] LIN Z Q, LI Y B, LOU M, et al. Electroplastic self-piercing riveting device: CN101920302A[P]. 2010-12-22. 林忠钦, 李永兵, 楼铭, 等. 电致塑性自冲铆接装置: CN101920302A[P]. 2010-12-22.
[45] LOU M. Study on mechanism and process of electric-aided self-piercing riveting of dual-phase steels[D]. Shanghai: Shanghai Jiao Tong University, 2015. 楼铭. 双相钢电辅助自冲铆接机理与方法研究[D]. 上海: 上海交通大学, 2015.
[46] LI Y B, LOU M, LI Y T, et al. Mechanical-solid phase joining device and methods: CN103240564A[P]. 2013-08-14. 李永兵, 楼铭, 李亚庭, 等. 机械-固相复合连接装置及其连接方法: CN103240564A[P]. 2013-08-14.
[47] LING Z, LI Y, LUO Z, et al. Resistance element welding of 6061 aluminum alloy to uncoated 22MnMoB boron steel[J]. Materials and Manufacturing Processes, 2016, 31(16): 2174-2180.
[48] MESCHUT G, JANZEN V, OLFERMANN T. Innovative and highly productive joining technologies for multi-material lightweight car body structures[J]. Journal of Materials Engineering and Performance, 2014, 23(5): 1515-1523.
[49] MESCHUT G, HAHN O, JANZEN V, et al. Innovative joining technologies for multi-material structures[J]. Welding in the World, 2014, 58(1): 65-75.
[50] LIU F, LIAO J, NAKATA K. Joining of metal to plastic using friction lap welding[J]. Materials & Design, 2014, 54: 236-244.
[51] KIMIAKI N, XIAO B, ATSUKI T, et al. Dissimilar materials joining of Al alloy/CFRTP by friction lap joining[J]. Transactions of JWRI, 2015, 44(1): 9-14.
[52] HE F. The electrothermal property and application of carbon fiber[J]. New Chemical Materials, 2005, 33(6): 7-8. 贺福. 碳纤维的电热性能及其应用[J]. 化工新型材料, 2005, 33(6): 7-8.
[53] OKADA T, UCHIDA S, NAKATA K. Effect of anodizing on direct joining properties of aluminium alloy and plastic sheets by friction lap joining[J]. Welding International, 2018, 32(2): 85-94.
[54] LIU F, LIAO J, GAO Y, et al. Effect of plasma electrolytic oxidation coating on joining metal to plastic[J]. Science and Technology of Welding and Joining, 2015, 20(4): 291-296.
[55] WU L, XIAO B, NAGATSUKA K, et al. Achieving strong friction lap joints of carbon-fiber reinforced plastic and metals by modifying metal surface structure via laser-processing pretreatment[J]. Composite Structures, 2020, 242: 112167.
[56] AMANCIO-FILHO S, dos SANTOS J. Method for joining metal and plastic workpieces: US Patent 8567032[P]. 2013-10-29.
[57] ANDRÉ N M, GOUSHEGIR S M, dos SANTOS J F, et al. Friction spot joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly (phenylene sulfide) laminate with additional PPS film interlayer: microstructure, mechanical strength and failure mechanisms[J]. Composites Part B, 2016, 94: 197-208.
[58] di FRANCO G, FRATINI L, PASTA A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks[J]. International Journal of Adhesion and Adhesives, 2013, 41: 24-32.
[59] NAGATSUKA K, YOSHIDA S, TSUCHIYA A, et al. Direct joining of carbon-fiber-reinforced plastic to an aluminum alloy using friction lap joining[J]. Composites Part B, 2015, 73: 82-88.
[60] OGAWA Y, AKEBONO H, TANAKA K, et al. Effect of welding time on fatigue properties of friction stir spot welds of Al to carbon fibre-reinforced plastic[J]. Science and Technology of Welding and Joining, 2019, 24(3): 235-242.
[1] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[2] 石磊, 戴翔, 武传松, 傅莉. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究[J]. 材料工程, 2021, 49(5): 122-129.
[3] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[4] 陈一哲, 赵越, 王辉. 汽车领域纤维复合材料构件轻量化设计与工艺研究进展[J]. 材料工程, 2020, 48(12): 36-43.
[5] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[6] 李文亚, 曹聪聪, 杨夏炜, 徐雅欣. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11): 53-63.
[7] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[8] 张亮亮, 王希靖, 刘骁. 6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化[J]. 材料工程, 2018, 46(10): 55-59.
[9] 王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
[10] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[11] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
[12] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[13] 李继忠, 马正斌, 董春林, 栾国红. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程, 2014, 0(6): 1-4.
[14] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[15] 崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn