Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 43-55    DOI: 10.11868/j.issn.1001-4381.2020.001060
  综述 本期目录 | 过刊浏览 | 高级检索 |
二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展
王佳佳1, 喻兰兰1, 胡霞1,2, 刘宝军1,2,*()
1 贵州大学 资源与环境工程学院, 贵阳 550025
2 贵州喀斯特环境生态系统教育部野外科学观测研究站, 贵阳 550025
Research progress in application of two-dimensional nanomaterials MXenes and its composites in electrocatalysis field
Jiajia WANG1, Lanlan YU1, Xia HU1,2, Baojun LIU1,2,*()
1 College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
2 Guizhou Karst Environmental Ecosystems Observation and Research Station(Ministry of Education), Guiyang 550025, China
全文: PDF(9917 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

MXenes作为一种新兴的二维层状过渡金属碳化物、氮化物和碳氮化合物, 近年来被广泛应用于物理、化学、材料科学和纳米技术领域当中。MXenes制备过程中会不可避免地出现缺陷和—O, —OH, —F官能团, 同时具备高的电导率和大的比表面积, 使得MXenes具有良好的电子转移速率, 可作为一种优良的电化学催化剂。本文综述了MXenes在电催化领域的研究进展, 介绍了MXenes多种合成方法、不同掺杂类型的发展现状, 重点讨论了其在电催化产氢、产氧、氧气还原、CO2还原以及氮气还原过程中的应用及机理研究, 并指出目前MXenes制备方法应朝着环境友好、形貌可控、难以氧化和高的可调节性方向发展, 以便应用于不同的电催化反应中。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳佳
喻兰兰
胡霞
刘宝军
关键词 MXenes二维材料机理电催化应用    
Abstract

MXenes, as a new 2D transition metal carbides/nitrides/carbonitrides, have wide potential application in physics, chemistry, material science and nanotechnology fields. Since MXenes inevitably possess defects and —O, —OH, —F terminal groups during the preparation, behaving high conductivity and large surface area, MXenes have a good electron transfer rate and can be used as an excellent electrochemical catalyst. In this review, the various synthesis methods and development of different doping types of MXenes were introduced. The application and mechanism of MXenes in electrocatalytic hydrogen production, oxygen production, oxygen reduction, CO2 reduction and nitrogen reduction processes were mainly discussed. It was pointed out that the preparation methods of MXenes should possess the characteristics of environmental friendliness, morphology controllability, the inoxidizability and high adjustability, meanwhile, different types of MXenes should be applied to different electrocatalytic reactions.

Key wordsMXenes    2D material    mechanism    electrocatalytic application
收稿日期: 2020-11-14      出版日期: 2022-01-19
中图分类号:  TB34  
基金资助:国家自然科学基金(22066006);贵州省研究生科研基金立项课题(黔教合YJSCXJH[2020]182)
通讯作者: 刘宝军     E-mail: jbliu@gzu.edu.cn
作者简介: 刘宝军(1983—),男,副教授,博士,主要从事MXenes基、MOFs基电催化以及光催化的应用研究,联系地址:贵州省贵阳市花溪区贵州大学西校区资源与环境工程学院(550025),E-mail: jbliu@gzu.edu.cn
引用本文:   
王佳佳, 喻兰兰, 胡霞, 刘宝军. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1): 43-55.
Jiajia WANG, Lanlan YU, Xia HU, Baojun LIU. Research progress in application of two-dimensional nanomaterials MXenes and its composites in electrocatalysis field. Journal of Materials Engineering, 2022, 50(1): 43-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001060      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/43
Fig.1  Ti3C2Tx MXene制备过程示意图[21]
(a)将Ti3SiC2 MAX相浸入750 ℃的氯化铜路易斯熔盐中; (b), (c)Ti3SiC2和CuCl2之间发生反应形成Ti3C2Tx MXene; (d)MS-Ti3C2Tx MXene在过硫酸铵溶液中进一步洗涤
Fig.2  Pt/Ti3C2Tx自还原稳定过程图[31]
Fig.3  MXenes的特性及各种应用
Fig.4  MXenes材料的催化性能
(a)Ti2CO2, V2CO2,Nb2CO2,Ti3C2O2和Nb4C3O2在标准析氢条件下的吉布斯自由能[55]; (b)扫描速率为10 mV/s时催化剂在0.5 mol/L H2SO4电解液中的极化曲线[60]
Fig.5  Pt@MXenes的电化学ORR性能测试[65]
(a)Pt/TiC和Pt/C在O2和N2饱和的0.1 mol/L KOH溶液中的CV曲线; (b)不同转速下的LSV曲线; (c)不同电位下的K-L曲线; (d), (e)Pt/Ti3C2Tx和Pt/C 100次循环后不同电位下的电流密度; (f)Pt/C和Pt/TiC循环1500次后的LSV曲线对比
Fig.6  Ti2CTx和Mo2CTx的SEM图[68]
(a)HF刻蚀Ti2AlC的Ti2CTx; (b)KF+HCl刻蚀Ti2AlC的Ti2CTx; (c)HF刻蚀Mo2Ga2C的Mo2CTx
1 DAI J , CHEN B , SCIUBBA E . Ecological accounting based on extended exergy: a sustainability perspective[J]. Environmental Science & Technology, 2014, 48 (16): 9826- 9833.
2 刘艳明. 硼氮掺杂纳米金刚石和多孔碳的制备及其电催化还原性能[D]. 大连: 大连理工大学, 2016.
2 LIU Y M. Preparation of B, N doped nanodiamond and porous carbon and their electrocatalytic reduction performance[D]. Dalian: Dalian University of Technology, 2016.
3 ZHANG H . Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9 (10): 9451- 9469.
doi: 10.1021/acsnano.5b05040
4 赵文军, 秦疆洲, 尹志凡, 等. 新型2D MXenes纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31 (12): 1729- 1736.
4 ZHAO W J , QIN J Z , YIN Z F , et al. 2D MXenes for photocatalysis[J]. Progress in Chemistry, 2019, 31 (12): 1729- 1736.
5 NAGUIB M , KURTOGLU M , PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248- 4253.
doi: 10.1002/adma.201102306
6 PENG J H , CHEN X H , ONG W J , et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro-and photocatalysis[J]. Chem, 2019, 5 (1): 18- 50.
doi: 10.1016/j.chempr.2018.08.037
7 PANG J B , MENDES R G , BACHMATIUK A , et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48 (1): 72- 133.
doi: 10.1039/C8CS00324F
8 齐新, 陈翔, 彭思侃, 等. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47 (12): 10- 20.
8 QI X , CHEN X , PENG S K , et al. Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (12): 10- 20.
9 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXenes的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48 (4): 1- 14.
9 DANG A L , FANG C L , ZHAO Z , et al. Preparation of a new two-dimensional nanomaterials MXenes and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48 (4): 1- 14.
10 LIU Z S , ZHANG Y , ZHANG H B , et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2020, 8 (5): 1673- 1678.
doi: 10.1039/C9TC06304H
11 MARIANO M , MASHTALIR O , ANTONIO F Q , et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors[J]. Nanoscale, 2016, 8 (36): 16371- 16378.
doi: 10.1039/C6NR03682A
12 CHAUDHURI K , ALHABEB M , WANG Z X , et al. Highly broadband absorber using plasmonic titanium carbide (MXene)[J]. ACS Photonics, 2018, 5 (3): 1115- 1122.
doi: 10.1021/acsphotonics.7b01439
13 SEH Z W , FREDRICKSON K D , ANASORI B , et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters, 2016, 1 (3): 589- 594.
doi: 10.1021/acsenergylett.6b00247
14 PENG C , YANG X F , LI Y H , et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8 (9): 6051- 6060.
15 GUO Y , WANG T R , YANG Q , et al. Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx MXene nanosheets[J]. ACS Nano, 2020, 14 (7): 9089- 9097.
doi: 10.1021/acsnano.0c04284
16 GAO Z W , ZHENG W R , LEE L Y S . Highly enhanced pseu-docapacitive performance of vanadium-doped MXenes in neutral electrolytes[J]. Small, 2019, 15 (40): 1902649.
doi: 10.1002/smll.201902649
17 LI Z L , ZHUANG Z C , LV F , et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe3d elec-tron delocalization matters[J]. Advanced Materials, 2018, 30 (43): 1803220.
doi: 10.1002/adma.201803220
18 ZHANG S L , YING H J , GUO R N , et al. Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx MXenes composites for lithium-ion batteries[J]. Journal of Physical Chemistry Letters, 2019, 10 (21): 6446- 6454.
doi: 10.1021/acs.jpclett.9b02335
19 HANTANASIRISAKUL K , GOGOTSI Y . Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials, 2018, 30 (52): 1804779.
doi: 10.1002/adma.201804779
20 YANG S , ZHANG P P , WANG F X , et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie-International Edition, 2018, 57 (47): 15491- 15495.
doi: 10.1002/anie.201809662
21 LI Y B , SHAO H , LIN Z F , et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19 (8): 894- 899.
doi: 10.1038/s41563-020-0657-0
22 KAMYSBAYEV V , FILATOV A S , HU H C , et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science, 2020, 369 (6506): 979- 983.
doi: 10.1126/science.aba8311
23 XU C , WANG L B , LIU Z B , et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14 (11): 1135- 1141.
doi: 10.1038/nmat4374
24 SOUNDIRARAJU B , GEORGE B K . Two-dimensional titanium nitride(Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate[J]. ACS Nano, 2017, 11 (9): 8892- 8900.
doi: 10.1021/acsnano.7b03129
25 DJIRE A , ZHANG H Y , LIU J , et al. Electrocatalytic and opto-electronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene[J]. ACS Applied Materials & Interfaces, 2019, 11 (12): 11812- 11823.
26 DJIRE A , BOS A , LIU J , et al. Pseudocapacitive storage in nanolayered Ti2NTx MXene using Mg-ion electrolyte[J]. ACS App-lied Nano Materials, 2019, 2 (5): 2785- 2795.
doi: 10.1021/acsanm.9b00289
27 CHEN X Z , KONG Z Z , LI N , et al. Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study[J]. Physical Chemistry Chemical Phy-sics, 2016, 18 (48): 32937- 32943.
doi: 10.1039/C6CP06018H
28 GUO W B , SHE Z U , XUE H T , et al. Density functional theory study on the Ti3CN and Ti3CNT2 (T= O, S and F) as high capacity anode material for Na ion batteries[J]. Applied Surface Science, 2020, 529, 147180.
doi: 10.1016/j.apsusc.2020.147180
29 HANTANASIRISAKUL K , ALHABEB M , LIPATOV A , et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene[J]. Chemistry of Materials, 2019, 31 (8): 2941- 2951.
doi: 10.1021/acs.chemmater.9b00401
30 KAN D X , WANG D S , ZHANG X L , et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations[J]. Journal of Materials Chemistry A, 2020, 8 (6): 3097- 3108.
doi: 10.1039/C9TA12255A
31 ZHAO D , CHEN Z , YANG W J , et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2[J]. Journal of the American Chemical Society, 2019, 141 (9): 4086- 4093.
doi: 10.1021/jacs.8b13579
32 CHENG Y W , DAI J H , SONG Y , et al. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation[J]. Nanoscale, 2019, 11 (39): 18132- 18141.
doi: 10.1039/C9NR05402B
33 JUNG E , SHIN H , ANTINK W H , et al. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design[J]. ACS Energy Letters, 2020, 5 (6): 1881- 1892.
doi: 10.1021/acsenergylett.0c00812
34 LE T A , BUI Q V , TRAN N Q , et al. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 16879- 16888.
35 TANG Y , YANG C H , SHENG M H , et al. Synergistically coupling phosphorus-doped molybdenum carbide with MXene as a highly efficient and stable electrocatalyst for hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (34): 12990- 12998.
36 ZHANG T R , JIANG X , LI G C , et al. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) na-nodot composite[J]. ChemNanoMat, 2018, 4 (1): 56- 60.
doi: 10.1002/cnma.201700232
37 LIU R , CAO W K , HAN D M , et al. Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 793, 505- 511.
doi: 10.1016/j.jallcom.2019.03.209
38 ZHOU S , YANG X W , PEI W , et al. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts[J]. Nanoscale, 2018, 10 (23): 10876- 10883.
doi: 10.1039/C8NR01090K
39 XIE X Q , ZHAO M Q , ANASORI B , et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26, 513- 523.
doi: 10.1016/j.nanoen.2016.06.005
40 HUANG L , AI L H , WANG M , et al. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44 (2): 965- 976.
doi: 10.1016/j.ijhydene.2018.11.084
41 XU X S , SUN B T , LIANG Z Q , et al. High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2anchored on Ti3C2 MXene under ambient conditions[J]. ACS Applied Materials & Interfaces, 2020, 12 (23): 26060- 26067.
42 CAO S W , SHEN B J , TONG T , et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocataly-tic CO2 reduction[J]. Advanced Functional Materials, 2018, 28 (21): 1800136.
doi: 10.1002/adfm.201800136
43 SU T M , HOOD Z D , NAGUIB M , et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11 (17): 8138- 8149.
doi: 10.1039/C9NR00168A
44 XUE C T , HE Y , LIU Y J , et al. Controlled synthesis of alkalized Ti3C2 MXene-supported β-FeOOH nanoparticles as anodes for lithium-ion batteries[J]. Ionics, 2019, 25 (7): 3069- 3077.
doi: 10.1007/s11581-019-02901-0
45 YU M Z , ZHOU S , WANG Z Y , et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy, 2018, 44, 181- 190.
doi: 10.1016/j.nanoen.2017.12.003
46 JIANG G Y , ZHENG N , CHEN X , et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nano-sheets to multifunctionalize separators for stable Li-S batteries[J]. Chemical Engineering Journal, 2019, 373, 1309- 1318.
doi: 10.1016/j.cej.2019.05.119
47 ZHANG Z W , LI H N , ZOU G D , et al. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (12): 6763- 6771.
48 LIU R , LI W H . High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly (vinyl alcohol) (PVA) compo-sites[J]. ACS Omega, 2018, 3 (3): 2609- 2617.
doi: 10.1021/acsomega.7b02001
49 CUI C , XIANG C , GENG L , et al. Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding[J]. Journal of Alloys and Compounds, 2019, 788, 1246- 1255.
doi: 10.1016/j.jallcom.2019.02.294
50 ZHANG H L , LI M , CAO J L , et al. 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B[J]. Ceramics Internatio-nal, 2018, 44 (16): 19958- 19962.
51 ZHOU W J , ZHU J F , WANG F , et al. One-step synthesis of ceria/Ti3C2 nanocomposites with enhanced photocatalytic activity[J]. Materials Letters, 2017, 206, 237- 240.
doi: 10.1016/j.matlet.2017.06.117
52 LOW J X , ZHANG L Y , TONG T , et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J]. Journal of Catalysis, 2018, 361, 255- 266.
doi: 10.1016/j.jcat.2018.03.009
53 XUE Q , PEI Z X , HUANG Y , et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A, 2017, 5 (39): 20818- 20823.
doi: 10.1039/C7TA04532H
54 WANG Y S , LI Y Y , QIU Z P , et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6 (24): 11189- 11197.
doi: 10.1039/C8TA00122G
55 GAO G P , O'MULLANE A P , DU A J . 2D MXenes: a new fami- ly of promising catalysts for the hydrogen evolution reaction[J]. ACS Catalysis, 2017, 7 (1): 494- 500.
doi: 10.1021/acscatal.6b02754
56 YU M Z , ZHOU S , WANG Z Y , et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy, 2018, 44, 181- 190.
doi: 10.1016/j.nanoen.2017.12.003
57 LIN H , CHEN L S , LU X Y , et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China-Materials, 2019, 62 (5): 662- 670.
doi: 10.1007/s40843-018-9378-3
58 LI N , CHEN X Z , ONG W J , et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes)[J]. ACS Nano, 2017, 11 (11): 10825- 10833.
doi: 10.1021/acsnano.7b03738
59 LUO Y , CHEN G F , DING L , et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3 (1): 279- 289.
doi: 10.1016/j.joule.2018.09.011
60 WU X H , WANG Z Y , YU M Z , et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29 (24): 1607017.
doi: 10.1002/adma.201607017
61 LI Z , QI Z Y , WANG S W , et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions[J]. Nano Letters, 2019, 19 (8): 5102- 5108.
doi: 10.1021/acs.nanolett.9b01381
62 RIEDL H J, PELEIDERER G. Structural basis of biological nitrogen fixation: US 2158525A[P]. 1939-06-16.
63 XIA C , BACK S , RINGE S , et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide[J]. Nature Catalysis, 2020, 3 (2): 125- 134.
doi: 10.1038/s41929-019-0402-8
64 ZHANG X L , ZHANG Y Y , CHENG C , et al. Tuning the ORR activity of Pt-based Ti2CO2 MXenes by varying the atomic cluster size and doping with metals[J]. Nanoscale, 2020, 12 (23): 12497- 12507.
doi: 10.1039/D0NR00048E
65 ZHANG C , MA B , ZHOU Y K , et al. Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions[J]. Journal of Electroanalytical Chemistry, 2020, 865, 114142.
doi: 10.1016/j.jelechem.2020.114142
66 ZHANG X , ZHANG Z H , LI J L , et al. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction[J]. Journal of Materials Chemistry A, 2017, 5 (25): 12899- 12903.
doi: 10.1039/C7TA03557H
67 WHIPPLE D T , KENIS P J A . Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters, 2010, 1 (24): 3451- 3458.
doi: 10.1021/jz1012627
68 HANDOKO A D , CHEN H T , LUM Y W , et al. Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction[J]. Iscience, 2020, 23 (6): 101181.
doi: 10.1016/j.isci.2020.101181
69 KOZUCH S , SHAIK S . Kinetic-quantum chemical model for ca-talytic cycles: the Haber-Bosch process and the effect of reagent concentration[J]. Journal of Physical Chemistry A, 2008, 112 (26): 6032- 6041.
doi: 10.1021/jp8004772
70 YU L L , QIN J Z , ZHAO W J , et al. Advances in two-dimensional MXenes for nitrogen electrocatalytic reduction to ammonia[J]. International Journal of Photoenergy, 2020, 2020, 1- 11.
71 LI T F , YAN X D , HUANG L J , et al. Fluorine-free Ti3C2Tx (T=O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7 (24): 14462- 14465.
doi: 10.1039/C9TA03254A
72 FANG Y F , LIU Z C , HAN J R , et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXenes[J]. Advanced Energy Materials, 2019, 9 (16): 1803406.
doi: 10.1002/aenm.201803406
73 YU G S , GUO H R , LIU S H , et al. Cr3C2 nanoparticle-embe-dded carbon nanofiber for artificial synthesis of NH3 through N2 fixation under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11 (39): 35764- 35769.
74 MASHTALIR O , COOK K M , MOCHALIN V N , et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. Journal of Materials Chemistry A, 2014, 2 (35): 14334- 14338.
doi: 10.1039/C4TA02638A
75 YI Y Y , YUA J L , TANG H F , et al. Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocata-lytic degradation[J]. Journal of Colloid and Interface Science, 2020, 571, 297- 306.
doi: 10.1016/j.jcis.2020.03.061
76 SHAHZAD A , RASOOL K , NAWAZ M , et al. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of anti-epileptic drug carbamazepine[J]. Chemical Engineering Journal, 2018, 349, 748- 755.
doi: 10.1016/j.cej.2018.05.148
[1] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[2] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[3] 任素娥, 王雅娜, 杨程. 固体浮力材料用复合泡沫的研究进展[J]. 材料工程, 2022, 50(6): 86-96.
[4] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[5] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[6] 邵琦, 吴晓玉, 张玲, 皮宗力, 李英龙. 连续等通道转角挤压对Al-Ti-C合金组织与性能的影响[J]. 材料工程, 2022, 50(3): 115-121.
[7] 白龙腾, 成来飞, 杨晓辉, 曹晶, 王毅. 双组元液体动力环境下3D C/SiC复合材料喷管烧蚀性能[J]. 材料工程, 2022, 50(2): 118-126.
[8] 赖佳明, 李京懋, 朱德智, 梁良, 屈盛官, 李小强. 1400℃放电等离子烧结制备MgO-B2O3增韧无金属黏结相WC硬质合金[J]. 材料工程, 2022, 50(11): 73-80.
[9] 朱振东, 肖长江, 马金明, 栗正新. Pr6O11对合成金刚石单晶各向异性的刻蚀[J]. 材料工程, 2022, 50(11): 173-181.
[10] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
[11] 李波, 李圣鑫, 张执南, 张坚, 熊光耀, 沈明学. 热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响[J]. 材料工程, 2021, 49(5): 114-121.
[12] 洪智亮, 张巧君, 李开元, 郭洪宝, 张程煜, 刘永胜. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5): 144-150.
[13] 滕凌虹, 曹伟伟, 朱波, 秦溶蔓. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2): 42-53.
[14] 阴明, 孙俊丽, 鲍同尧, 刘笑达, 杜华云, 卫英慧, 侯利锋. 合金元素对镁合金耐腐蚀性能影响的研究进展[J]. 材料工程, 2021, 49(12): 28-39.
[15] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn