1 College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China 2 Guizhou Karst Environmental Ecosystems Observation and Research Station(Ministry of Education), Guiyang 550025, China
MXenes, as a new 2D transition metal carbides/nitrides/carbonitrides, have wide potential application in physics, chemistry, material science and nanotechnology fields. Since MXenes inevitably possess defects and —O, —OH, —F terminal groups during the preparation, behaving high conductivity and large surface area, MXenes have a good electron transfer rate and can be used as an excellent electrochemical catalyst. In this review, the various synthesis methods and development of different doping types of MXenes were introduced. The application and mechanism of MXenes in electrocatalytic hydrogen production, oxygen production, oxygen reduction, CO2 reduction and nitrogen reduction processes were mainly discussed. It was pointed out that the preparation methods of MXenes should possess the characteristics of environmental friendliness, morphology controllability, the inoxidizability and high adjustability, meanwhile, different types of MXenes should be applied to different electrocatalytic reactions.
DAI J , CHEN B , SCIUBBA E . Ecological accounting based on extended exergy: a sustainability perspective[J]. Environmental Science & Technology, 2014, 48 (16): 9826- 9833.
LIU Y M. Preparation of B, N doped nanodiamond and porous carbon and their electrocatalytic reduction performance[D]. Dalian: Dalian University of Technology, 2016.
ZHAO W J , QIN J Z , YIN Z F , et al. 2D MXenes for photocatalysis[J]. Progress in Chemistry, 2019, 31 (12): 1729- 1736.
5
NAGUIB M , KURTOGLU M , PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248- 4253.
doi: 10.1002/adma.201102306
6
PENG J H , CHEN X H , ONG W J , et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro-and photocatalysis[J]. Chem, 2019, 5 (1): 18- 50.
doi: 10.1016/j.chempr.2018.08.037
7
PANG J B , MENDES R G , BACHMATIUK A , et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48 (1): 72- 133.
doi: 10.1039/C8CS00324F
QI X , CHEN X , PENG S K , et al. Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (12): 10- 20.
DANG A L , FANG C L , ZHAO Z , et al. Preparation of a new two-dimensional nanomaterials MXenes and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48 (4): 1- 14.
10
LIU Z S , ZHANG Y , ZHANG H B , et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2020, 8 (5): 1673- 1678.
doi: 10.1039/C9TC06304H
11
MARIANO M , MASHTALIR O , ANTONIO F Q , et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors[J]. Nanoscale, 2016, 8 (36): 16371- 16378.
doi: 10.1039/C6NR03682A
12
CHAUDHURI K , ALHABEB M , WANG Z X , et al. Highly broadband absorber using plasmonic titanium carbide (MXene)[J]. ACS Photonics, 2018, 5 (3): 1115- 1122.
doi: 10.1021/acsphotonics.7b01439
13
SEH Z W , FREDRICKSON K D , ANASORI B , et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters, 2016, 1 (3): 589- 594.
doi: 10.1021/acsenergylett.6b00247
14
PENG C , YANG X F , LI Y H , et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8 (9): 6051- 6060.
15
GUO Y , WANG T R , YANG Q , et al. Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx MXene nanosheets[J]. ACS Nano, 2020, 14 (7): 9089- 9097.
doi: 10.1021/acsnano.0c04284
16
GAO Z W , ZHENG W R , LEE L Y S . Highly enhanced pseu-docapacitive performance of vanadium-doped MXenes in neutral electrolytes[J]. Small, 2019, 15 (40): 1902649.
doi: 10.1002/smll.201902649
17
LI Z L , ZHUANG Z C , LV F , et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe3d elec-tron delocalization matters[J]. Advanced Materials, 2018, 30 (43): 1803220.
doi: 10.1002/adma.201803220
18
ZHANG S L , YING H J , GUO R N , et al. Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx MXenes composites for lithium-ion batteries[J]. Journal of Physical Chemistry Letters, 2019, 10 (21): 6446- 6454.
doi: 10.1021/acs.jpclett.9b02335
19
HANTANASIRISAKUL K , GOGOTSI Y . Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials, 2018, 30 (52): 1804779.
doi: 10.1002/adma.201804779
20
YANG S , ZHANG P P , WANG F X , et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie-International Edition, 2018, 57 (47): 15491- 15495.
doi: 10.1002/anie.201809662
21
LI Y B , SHAO H , LIN Z F , et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19 (8): 894- 899.
doi: 10.1038/s41563-020-0657-0
22
KAMYSBAYEV V , FILATOV A S , HU H C , et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science, 2020, 369 (6506): 979- 983.
doi: 10.1126/science.aba8311
23
XU C , WANG L B , LIU Z B , et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14 (11): 1135- 1141.
doi: 10.1038/nmat4374
24
SOUNDIRARAJU B , GEORGE B K . Two-dimensional titanium nitride(Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate[J]. ACS Nano, 2017, 11 (9): 8892- 8900.
doi: 10.1021/acsnano.7b03129
25
DJIRE A , ZHANG H Y , LIU J , et al. Electrocatalytic and opto-electronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene[J]. ACS Applied Materials & Interfaces, 2019, 11 (12): 11812- 11823.
26
DJIRE A , BOS A , LIU J , et al. Pseudocapacitive storage in nanolayered Ti2NTx MXene using Mg-ion electrolyte[J]. ACS App-lied Nano Materials, 2019, 2 (5): 2785- 2795.
doi: 10.1021/acsanm.9b00289
27
CHEN X Z , KONG Z Z , LI N , et al. Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study[J]. Physical Chemistry Chemical Phy-sics, 2016, 18 (48): 32937- 32943.
doi: 10.1039/C6CP06018H
28
GUO W B , SHE Z U , XUE H T , et al. Density functional theory study on the Ti3CN and Ti3CNT2 (T= O, S and F) as high capacity anode material for Na ion batteries[J]. Applied Surface Science, 2020, 529, 147180.
doi: 10.1016/j.apsusc.2020.147180
29
HANTANASIRISAKUL K , ALHABEB M , LIPATOV A , et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene[J]. Chemistry of Materials, 2019, 31 (8): 2941- 2951.
doi: 10.1021/acs.chemmater.9b00401
30
KAN D X , WANG D S , ZHANG X L , et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations[J]. Journal of Materials Chemistry A, 2020, 8 (6): 3097- 3108.
doi: 10.1039/C9TA12255A
31
ZHAO D , CHEN Z , YANG W J , et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2[J]. Journal of the American Chemical Society, 2019, 141 (9): 4086- 4093.
doi: 10.1021/jacs.8b13579
32
CHENG Y W , DAI J H , SONG Y , et al. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation[J]. Nanoscale, 2019, 11 (39): 18132- 18141.
doi: 10.1039/C9NR05402B
33
JUNG E , SHIN H , ANTINK W H , et al. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design[J]. ACS Energy Letters, 2020, 5 (6): 1881- 1892.
doi: 10.1021/acsenergylett.0c00812
34
LE T A , BUI Q V , TRAN N Q , et al. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 16879- 16888.
35
TANG Y , YANG C H , SHENG M H , et al. Synergistically coupling phosphorus-doped molybdenum carbide with MXene as a highly efficient and stable electrocatalyst for hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (34): 12990- 12998.
36
ZHANG T R , JIANG X , LI G C , et al. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) na-nodot composite[J]. ChemNanoMat, 2018, 4 (1): 56- 60.
doi: 10.1002/cnma.201700232
37
LIU R , CAO W K , HAN D M , et al. Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 793, 505- 511.
doi: 10.1016/j.jallcom.2019.03.209
38
ZHOU S , YANG X W , PEI W , et al. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts[J]. Nanoscale, 2018, 10 (23): 10876- 10883.
doi: 10.1039/C8NR01090K
39
XIE X Q , ZHAO M Q , ANASORI B , et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26, 513- 523.
doi: 10.1016/j.nanoen.2016.06.005
40
HUANG L , AI L H , WANG M , et al. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44 (2): 965- 976.
doi: 10.1016/j.ijhydene.2018.11.084
41
XU X S , SUN B T , LIANG Z Q , et al. High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2anchored on Ti3C2 MXene under ambient conditions[J]. ACS Applied Materials & Interfaces, 2020, 12 (23): 26060- 26067.
42
CAO S W , SHEN B J , TONG T , et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocataly-tic CO2 reduction[J]. Advanced Functional Materials, 2018, 28 (21): 1800136.
doi: 10.1002/adfm.201800136
43
SU T M , HOOD Z D , NAGUIB M , et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11 (17): 8138- 8149.
doi: 10.1039/C9NR00168A
44
XUE C T , HE Y , LIU Y J , et al. Controlled synthesis of alkalized Ti3C2 MXene-supported β-FeOOH nanoparticles as anodes for lithium-ion batteries[J]. Ionics, 2019, 25 (7): 3069- 3077.
doi: 10.1007/s11581-019-02901-0
45
YU M Z , ZHOU S , WANG Z Y , et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy, 2018, 44, 181- 190.
doi: 10.1016/j.nanoen.2017.12.003
46
JIANG G Y , ZHENG N , CHEN X , et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nano-sheets to multifunctionalize separators for stable Li-S batteries[J]. Chemical Engineering Journal, 2019, 373, 1309- 1318.
doi: 10.1016/j.cej.2019.05.119
47
ZHANG Z W , LI H N , ZOU G D , et al. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (12): 6763- 6771.
48
LIU R , LI W H . High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly (vinyl alcohol) (PVA) compo-sites[J]. ACS Omega, 2018, 3 (3): 2609- 2617.
doi: 10.1021/acsomega.7b02001
49
CUI C , XIANG C , GENG L , et al. Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding[J]. Journal of Alloys and Compounds, 2019, 788, 1246- 1255.
doi: 10.1016/j.jallcom.2019.02.294
50
ZHANG H L , LI M , CAO J L , et al. 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B[J]. Ceramics Internatio-nal, 2018, 44 (16): 19958- 19962.
51
ZHOU W J , ZHU J F , WANG F , et al. One-step synthesis of ceria/Ti3C2 nanocomposites with enhanced photocatalytic activity[J]. Materials Letters, 2017, 206, 237- 240.
doi: 10.1016/j.matlet.2017.06.117
52
LOW J X , ZHANG L Y , TONG T , et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J]. Journal of Catalysis, 2018, 361, 255- 266.
doi: 10.1016/j.jcat.2018.03.009
53
XUE Q , PEI Z X , HUANG Y , et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries[J]. Journal of Materials Chemistry A, 2017, 5 (39): 20818- 20823.
doi: 10.1039/C7TA04532H
54
WANG Y S , LI Y Y , QIU Z P , et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6 (24): 11189- 11197.
doi: 10.1039/C8TA00122G
55
GAO G P , O'MULLANE A P , DU A J . 2D MXenes: a new fami- ly of promising catalysts for the hydrogen evolution reaction[J]. ACS Catalysis, 2017, 7 (1): 494- 500.
doi: 10.1021/acscatal.6b02754
56
YU M Z , ZHOU S , WANG Z Y , et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy, 2018, 44, 181- 190.
doi: 10.1016/j.nanoen.2017.12.003
57
LIN H , CHEN L S , LU X Y , et al. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction[J]. Science China-Materials, 2019, 62 (5): 662- 670.
doi: 10.1007/s40843-018-9378-3
58
LI N , CHEN X Z , ONG W J , et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes)[J]. ACS Nano, 2017, 11 (11): 10825- 10833.
doi: 10.1021/acsnano.7b03738
59
LUO Y , CHEN G F , DING L , et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3 (1): 279- 289.
doi: 10.1016/j.joule.2018.09.011
60
WU X H , WANG Z Y , YU M Z , et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29 (24): 1607017.
doi: 10.1002/adma.201607017
61
LI Z , QI Z Y , WANG S W , et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions[J]. Nano Letters, 2019, 19 (8): 5102- 5108.
doi: 10.1021/acs.nanolett.9b01381
62
RIEDL H J, PELEIDERER G. Structural basis of biological nitrogen fixation: US 2158525A[P]. 1939-06-16.
63
XIA C , BACK S , RINGE S , et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide[J]. Nature Catalysis, 2020, 3 (2): 125- 134.
doi: 10.1038/s41929-019-0402-8
64
ZHANG X L , ZHANG Y Y , CHENG C , et al. Tuning the ORR activity of Pt-based Ti2CO2 MXenes by varying the atomic cluster size and doping with metals[J]. Nanoscale, 2020, 12 (23): 12497- 12507.
doi: 10.1039/D0NR00048E
65
ZHANG C , MA B , ZHOU Y K , et al. Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions[J]. Journal of Electroanalytical Chemistry, 2020, 865, 114142.
doi: 10.1016/j.jelechem.2020.114142
66
ZHANG X , ZHANG Z H , LI J L , et al. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction[J]. Journal of Materials Chemistry A, 2017, 5 (25): 12899- 12903.
doi: 10.1039/C7TA03557H
67
WHIPPLE D T , KENIS P J A . Prospects of CO2 utilization via direct heterogeneous electrochemical reduction[J]. The Journal of Physical Chemistry Letters, 2010, 1 (24): 3451- 3458.
doi: 10.1021/jz1012627
68
HANDOKO A D , CHEN H T , LUM Y W , et al. Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction[J]. Iscience, 2020, 23 (6): 101181.
doi: 10.1016/j.isci.2020.101181
69
KOZUCH S , SHAIK S . Kinetic-quantum chemical model for ca-talytic cycles: the Haber-Bosch process and the effect of reagent concentration[J]. Journal of Physical Chemistry A, 2008, 112 (26): 6032- 6041.
doi: 10.1021/jp8004772
70
YU L L , QIN J Z , ZHAO W J , et al. Advances in two-dimensional MXenes for nitrogen electrocatalytic reduction to ammonia[J]. International Journal of Photoenergy, 2020, 2020, 1- 11.
71
LI T F , YAN X D , HUANG L J , et al. Fluorine-free Ti3C2Tx (T=O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7 (24): 14462- 14465.
doi: 10.1039/C9TA03254A
72
FANG Y F , LIU Z C , HAN J R , et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXenes[J]. Advanced Energy Materials, 2019, 9 (16): 1803406.
doi: 10.1002/aenm.201803406
73
YU G S , GUO H R , LIU S H , et al. Cr3C2 nanoparticle-embe-dded carbon nanofiber for artificial synthesis of NH3 through N2 fixation under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11 (39): 35764- 35769.
74
MASHTALIR O , COOK K M , MOCHALIN V N , et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. Journal of Materials Chemistry A, 2014, 2 (35): 14334- 14338.
doi: 10.1039/C4TA02638A
75
YI Y Y , YUA J L , TANG H F , et al. Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocata-lytic degradation[J]. Journal of Colloid and Interface Science, 2020, 571, 297- 306.
doi: 10.1016/j.jcis.2020.03.061
76
SHAHZAD A , RASOOL K , NAWAZ M , et al. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of anti-epileptic drug carbamazepine[J]. Chemical Engineering Journal, 2018, 349, 748- 755.
doi: 10.1016/j.cej.2018.05.148