Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 67-79    DOI: 10.11868/j.issn.1001-4381.2021.000021
  综述 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池用多孔电极结构设计及制备技术进展
汪晨阳1,2,3, 张安邦1,2,3, 常增花1,2, 吴帅锦1,2, 刘智1,2,3, 庞静1,2,3,*()
1 有研科技集团有限公司 国家动力电池创新中心, 北京 100088
2 国联汽车动力电池研究院有限责任公司, 北京 100088
3 北京有色金属研究总院, 北京 100088
Progress in structure design and preparation of porous electrodes for lithium ion batteries
Chenyang WANG1,2,3, Anbang ZHANG1,2,3, Zenghua CHANG1,2, Shuaijin WU1,2, Zhi LIU1,2,3, Jing PANG1,2,3,*()
1 National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China
2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(10514 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着人们对锂离子电池需求的日益增加, 高能量密度和高功率密度锂离子电池技术成为研究热点之一。材料改性及新材料开发能有效提高电池的能量密度, 除此以外, 孔隙率、孔径大小与分布、曲折度及电极组分分布等电极的微观结构参数也是决定电极及电池性能的关键因素。通过优化电极结构设计提升高比能电池的性能逐渐成为人们关注的焦点。本文综述了锂离子电池多孔电极结构设计优化的研究进展, 总结了多孔电极结构设计要素及制备方法, 最后对电极结构设计优化以及推动新型制备技术的规模化应用在高比能锂离子电池领域的未来发展前景进行展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪晨阳
张安邦
常增花
吴帅锦
刘智
庞静
关键词 锂离子电池电极结构孔隙率曲折度    
Abstract

With the increasing demand for lithium-ion batteries, lithium-ion batteries with high energy density and high power density have become one of the research hotspots. Material modification and new material development can effectively increase the energy density of lithium-ion batteries. In addition, the microstructure parameters of the electrode such as porosity, pore size and distribution, tortuosity and electrode composition distribution are also factors that determine the performance of the electrode and battery. Improving the performance of high specific energy batteries by optimizing the electrode structure design has gradually become the focus of attention. The research progress of porous electrode structure design optimization for lithium ion batteries was reviewed in this article, the design factors and preparation methods of porous electrode structure were summarized. Then the future development of electrode structure design optimization and the promotion of novel preparation technologies for large-scale application in the field of high specific energy lithium ion batteries were prospected in the field of high specific energy lithium ion batteries.

Key wordslithium-ion battery    electrode structure    porosity    tortuosity
收稿日期: 2021-01-07      出版日期: 2022-01-19
中图分类号:  O613.7  
  O646.21  
  TM912.6  
基金资助:国家重点研发计划(2016YFB0301305)
通讯作者: 庞静     E-mail: pangjing@glabat.com
作者简介: 庞静(1972—),女,教授级高级工程师,博士,主要从事锂离子电池相关研究,联系地址:北京市西城区新街口外大街2号北京有色金属研究总院(100088),E-mail:pangjing@glabat.com
引用本文:   
汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
Chenyang WANG, Anbang ZHANG, Zenghua CHANG, Shuaijin WU, Zhi LIU, Jing PANG. Progress in structure design and preparation of porous electrodes for lithium ion batteries. Journal of Materials Engineering, 2022, 50(1): 67-79.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000021      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/67
Fig.1  不同初始孔隙率下锂化过程中孔隙率的演变[23]
(a)数据示意图;(b)模型示意图
Fig.2  多孔介质传输曲折路径示意图[35]
Fig.3  曲折度测量方法[41]
(a)等效电路模型;(b)对称电池示意图
Method Year Electrode Porosity/% Tortuosity Reference
FIB-SEM measured 3D structure 2014 LCO(LiCoO2) 1.25 [38]
Gas transport resistance measurement 2014 Graphite LMO/LNMCO(Li2Mn2O4/ LiNi0.3Mn0.3Co0.3O2) 28.5±1.3 21.5±0.25 5.95±0.51 3.74±0.38 [40]
Fluid mechanics simulation electrode heat exchange method 2015 NMC(LiNi0.3Mn0.3Co0.3O2) Bruggemann index 2.93 (the lower the index, the lower the tortuous degree) [37]
Electrochemical impedance spectroscopy 2016 Flake graphite Spherical NCM 29 34 5.0 4.3 [41]
Electrochemical impedance spectroscopy 2018 Graphite(binder alginate) Graphite(binder Kynar) Graphite(binder CMC/SBR) 56±1 52±1 46±1 3.1±0.1 4.3±0.1 10.2±0.3 [42]
Electrochemical impedance spectroscopy 2018 Graphite(drying temperature 75 ℃) 55 4.6±0.03 [44]
Graphite(drying temperature 125 ℃) 55 4.4±0. 3
Electrochemical impedance spectroscopy 2018 Graphite(MCMB) 49.1 1.64 ±0.02(the plane) 2.30±0.02(the vertical plane) [45]
Electrochemical impedance spectroscopy 2018 NCM 40 1.77±0.06(XTM) 3.10±0.30(EIS) [43]
NCA(LiNiCoAlO2) 40 1.73±0.03(XTM) 4.00±0.05(EIS)
Graphite 51 2.18±0.06(XTM) 3.30±0.05(EIS)
DC-depolarization experiment 2019 LCO(alignment hole) 41.3 1.93±0.03 [46]
LCO(No alignment hole) 43 2.93±0.06
Table 1  多孔电极曲折度的测量方法
Fig.4  电极厚度对多孔电极的影响[36]
(a)能量密度;(b)传输路径
Fig.5  导电剂梯度分布模型示意图[76]
(a)导电剂含量上层大于下层; (b)导电剂含量下层大于上层
Fig.6  嵌脱锂过程中硅电极失效示意图[79]
(a)硅颗粒破碎和粉化;(b)电极分层和机械完整性破坏;(c)电极制备示意图
Fig.7  硅/碳复合膜结构电极[81]
(a)电极制备流程图;(b)脱嵌锂过程中电极结构变化示意图
1 ZHUO H X , LIU Y , WANG Z Y , et al. Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure[J]. Nano Energy, 2021, 83 (25): 303- 318.
2 BEATTIE S D , LARCHER D , MORCRETTE M , et al. Si electrodes for Li-ion batteries—a new way to look at an old problem[J]. Journal of the Electrochemical Society, 2008, 155 (2): A158- A163.
doi: 10.1149/1.2817828
3 YANG G , JIA G , SHANGGUAN X , et al. The synergistic effects of Li2SiO3-coating and Si4+-doping for LiNi0.5Mn0.5O2 cathode materials on the structure and the electrochemical properties[J]. Journal of the Electrochemical Society, 2017, 164 (12): A2889- A2897.
doi: 10.1149/2.0131713jes
4 ZHANG Y , WANG Z B , YU F D , et al. Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery[J]. Journal of Power Sources, 2017, 358 (2): 1- 12.
5 SCHIPPER F , BOUZAGLO H , DIXIT M , et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of Nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials, 2018, 8 (4): 1701682.
doi: 10.1002/aenm.201701682
6 LEE Y S , SHIN W K , KANNAN A G , et al. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Appl Mater Interfaces, 2015, 7 (25): 13944- 13951.
doi: 10.1021/acsami.5b02690
7 WANG Z , LU H Q , YIN Y P , et al. FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for li-ion batteries[J]. Rare Metals, 2015, 36 (11): 899- 904.
8 QING R P , SHI J L , XIAO D D , et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Advanced Energy Materials, 2016, 6 (6): 1501914.
doi: 10.1002/aenm.201501914
9 SOHN H , DONG H K , YI R , et al. Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries[J]. Journal of Power Sources, 2016, 334 (1): 128- 136.
10 刘晶晶, 孙钦钦, 韩响, 等. 用于锂离子电池负极的多孔硅材料制备[J]. 厦门大学学报(自然科学版), 2013, 52 (4): 450- 454.
10 LIU J J , SUN Q Q , HAN X , et al. Preparation of porous silicon material for lithium ion battery anode[J]. Journal of Xiamen University(Nature Science), 2013, 52 (4): 450- 454.
11 KO M , CHAE S , MA J , et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nano Energy, 2016, 1 (9): 16113- 16121.
12 WANG H , XIE J , ZHANG S , et al. Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials[J]. RSC Advances, 2016, 6 (74): 69882- 69888.
doi: 10.1039/C6RA13114J
13 YANG C Y , CHEN J , JI X , et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569 (7755): 245- 250.
doi: 10.1038/s41586-019-1175-6
14 ZHANG H , ZONG P , CHEN M , et al. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries[J]. ACS Nano, 2019, 13 (3): 3054- 3062.
doi: 10.1021/acsnano.8b08088
15 SUN Y , LIU N , CUI Y . Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1 (7): 1- 12.
16 RAMADESIGAN V , METHEKAR R N , LATINWO F , et al. Optimal porosity distribution for minimized ohmic drop across a porous electrode[J]. Journal of the Electrochemical Society, 2010, 157 (12): A1328- A1334.
doi: 10.1149/1.3495992
17 吴帅锦, 杨娟玉, 于冰, 等. 微_纳复合结构硅基负极材料[J]. 化学进展, 2018, 30 (2/3): 272- 285.
17 WU S J , YANG J Y , YU B , et al. Nano/micro structured silicon-based negative materials[J]. Progress in Chemistry, 2018, 30 (2/3): 272- 285.
18 ZHAO H , YANG Q , YUCA N , et al. A convenient and versatile method to control the electrode microstructure toward high-energy lithium-ion batteries[J]. Nano Lett, 2016, 16 (7): 4686- 4690.
doi: 10.1021/acs.nanolett.6b02156
19 JEONG G , LEE S M , CHOI N S , et al. Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity: an in situ electrochemical dilatometric study[J]. Electrochimica Acta, 2011, 56 (14): 5095- 5101.
doi: 10.1016/j.electacta.2011.03.071
20 YU A B , ZOU R P , STANDISH N . Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures[J]. Industrial & Engineering Chemistry Research, 1996, 35 (10): 3730- 3741.
21 ZOU R P , YU A B . Evaluation of the packing characteristics of mono-sized non-spherical particles[J]. Powder Technology, 1996, 88 (1): 71- 79.
doi: 10.1016/0032-5910(96)03106-3
22 LIU Q , ZHANG T , BINDRA C , et al. Effect of morphology and texture on electrochemical properties of graphite anodes[J]. Journal of Power Sources, 1997, 68 (2): 287- 290.
doi: 10.1016/S0378-7753(97)02651-7
23 HEUBNER C , LANGKLOTZ U , MICHAELIS A . Theoretical optimization of electrode design parameters of Si based anodes for lithium-ion batteries[J]. Journal of Energy Storage, 2018, 15 (2): 181- 190.
24 MA J , SUNG J , HONG J , et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes[J]. Nat Commun, 2019, 10 (1): 475- 485.
doi: 10.1038/s41467-018-08233-3
25 OHZEKI K , OHSAKI Y , GOLMAN B , et al. Influence of void-size distribution of anode film made of natural graphite particles on high rate discharge capability of lithium-ion battery[J]. Tanso, 2010, 2004 (213): 140- 143.
26 WU M S , LIAO T L , WANG Y Y , et al. Assessment of the wettability of porous electrodes for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2004, 34 (8): 797- 805.
doi: 10.1023/B:JACH.0000035599.56679.15
27 KüHNEL R S , OBEIDI S , LVBKE M , et al. Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid[J]. Journal of Applied Electrochemistry, 2013, 43 (7): 697- 704.
doi: 10.1007/s10800-013-0558-x
28 SHENG Y. Investigation of electrolyte wetting in lithium ion batteries [D]. Wisconsin: University of Wisconsin-Milwaukee, 2015.
29 王炜娜, 李成章, 杜军. 负极对锂离子电池电解液浸润及电性能的影响[J]. 电源技术, 2013, 1 (6): 928- 930.
doi: 10.3969/j.issn.1002-087X.2013.06.008
29 WANG W N , LI C Z , DU J . Influence of negative electrode on electrolyte infiltration and electrical performance of lithium ion battery[J]. Chinese Journal of Power Sources, 2013, 1 (6): 928- 930.
doi: 10.3969/j.issn.1002-087X.2013.06.008
30 QI Y , JANG T , RAMADESIGAN V , et al. Is there a benefit in employing graded electrodes for lithium-ion batteries?[J]. Journal of the Electrochemical Society, 2017, 164 (13): A3196- A3207.
doi: 10.1149/2.1051713jes
31 GOLMON S , MAUTE K , DUNN M L . A design optimization methodology for Li+ batteries[J]. Journal of Power Sources, 2014, 253 (1): 239- 250.
32 DU Z , WOOD D L , DANIEL C , et al. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47 (3): 405- 415.
doi: 10.1007/s10800-017-1047-4
33 LIU L , GUAN P , LIU C . Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (13): A3163- A3173.
doi: 10.1149/2.1021713jes
34 BITSCH B , GALLASCH T , SCHROEDER M , et al. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes[J]. Journal of Power Sources, 2016, 328 (1): 114- 123.
35 COOPER S J , EASTWOOD D S , GELB J , et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247 (1): 1033- 1039.
36 KUANG Y , CHEN C , KIRSCH D , et al. Thick electrode batteries: principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9 (33): 1- 19.
37 VADAKKEPATT A , TREMBACKI B , MATHUR S R , et al. Bruggeman's exponents for effective thermal conductivity of lithium-ion battery electrodes[J]. Journal of the Electrochemical Society, 2015, 163 (2): A119- A130.
38 CHEN WIEGART Y C K , DEMIKE R , ERDONMEZ C , et al. Tortuosity characterization of 3d microstructure at nano-scale for energy storage and conversion materials[J]. Journal of Power Sources, 2014, 249 (1): 349- 356.
39 MOHAMMADIAN S K , ZHANG Y . Improving wettability and preventing Li-ion batteries from thermal runaway using microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 118 (1): 911- 918.
40 DUBESHTER T , SINHA P K , SAKARS A , et al. Measurement of tortuosity and porosity of porous battery electrodes[J]. Journal of the Electrochemical Society, 2014, 161 (4): A599- A605.
doi: 10.1149/2.073404jes
41 LANDESFEIND J , HATTENDORFF J , EHRL A , et al. Tortuosity determination of battery electrodes and separators by impedance spectroscopy[J]. Journal of the Electrochemical Society, 2016, 163 (7): A1373- A1387.
doi: 10.1149/2.1141607jes
42 LANDESFEIND J , ELDIVEN A , GASTEIGER H A . Influence of the binder on lithium ion battery electrode tortuosity and performance[J]. Journal of the Electrochemical Society, 2018, 165 (5): A1122- A1128.
doi: 10.1149/2.0971805jes
43 LANDESFEIND J , EBNER M , ELDIVEN A , et al. Tortuosity of battery electrodes: validation of impedance-derived values and critical comparison with 3D tomography[J]. Journal of the Electrochemical Society, 2018, 165 (3): A469- A476.
doi: 10.1149/2.0231803jes
44 MORASCH R , LANDESFEIND J , SUTHAR B , et al. Detection of binder gradients using impedance spectroscopy and their influence on the tortuosity of Li-ion battery graphite electrodes[J]. Journal of the Electrochemical Society, 2018, 165 (14): A3459- A3467.
doi: 10.1149/2.1021814jes
45 SUTHAR B , LANDESFEIND J , ELDIVEN A , et al. Method to determine the in-plane tortuosity of porous electrodes[J]. Journal of the Electrochemical Society, 2018, 165 (10): A2008- A2018.
doi: 10.1149/2.0121810jes
46 LI L , ERB R M , WANG J , et al. Battery electrodes: fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries[J]. Advanced Energy Materials, 2019, 9 (2): 1- 7.
47 CHENG H M , LI F . Charge delivery goes the distance[J]. Science, 2017, 356 (6338): 582- 583.
doi: 10.1126/science.aan1472
48 EBNER M , WOOD V . Tool for tortuosity estimation in lithium ion battery porous electrodes[J]. Journal of the Electrochemical Society, 2015, 162 (2): A3064- A3070.
doi: 10.1149/2.0111502jes
49 EBNER M , CHUNG D W , GARCÍA R E , et al. Tortuosity anisotropy in lithium-ion battery electrodes[J]. Advanced Energy Materials, 2014, 4 (5): 1- 6.
50 THORAT I V , STEPHENSON D E , ZACHARIAS N A , et al. Quantifying tortuosity in porous Li-ion battery materials[J]. Journal of Power Sources, 2009, 188 (2): 592- 600.
doi: 10.1016/j.jpowsour.2008.12.032
51 DOYLE M . Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of The Electrochemical Society, 1996, 143 (6): 1890- 1903.
doi: 10.1149/1.1836921
52 CHEN C , HU L . Nanocellulose toward advanced energy storage devices: Structure and electrochemistry[J]. ACC Chem Res, 2018, 51 (12): 3154- 3165.
doi: 10.1021/acs.accounts.8b00391
53 BAE C J , ERDONMEZ C K , HALLORAN J W , et al. Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance[J]. Adv Mater, 2013, 25 (9): 1254- 1258.
doi: 10.1002/adma.201204055
54 BEHR S A , CHIANG R , MING Y , et al. Highly-structured, additive-free lithium-ion cathodes by freeze-casting technology[J]. Ceramic Forum International, 2015, 92 (1): 39- 43.
55 SANDER J S , ERB R M , LI L , et al. High-performance battery electrodes via magnetic templating[J]. Nature Energy, 2016, 1 (8): 1- 7.
56 BILLAUD J , BOUVILLE F , MAGRINI T , et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1 (8): 1- 6.
57 ZHAO Z , SUN M , CHEN W , et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance[J]. Advanced Functional Materials, 2019, 29 (16): 1- 13.
58 LU L L , LU Y Y , XIAO Z J , et al. Wood-inspired high-performance ultrathick bulk battery electrodes[J]. Adv Mater, 2018, 30 (20): e1706745- e1706755.
doi: 10.1002/adma.201706745
59 AMIN R , DELATTRE B , TOMSIA A P , et al. Electrochemical characterization of high energy density graphite electrodes made by freeze-casting[J]. ACS Applied Energy Materials, 2018, 1 (9): 4976- 4981.
doi: 10.1021/acsaem.8b00962
60 CHOU S L , ZHAO Y , WANG J Z , et al. Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries[J]. The Journal of Physical Chemistry: C, 2010, 114 (37): 15862- 15867.
doi: 10.1021/jp1063403
61 JI J , JI H , ZHANG L L , et al. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries[J]. Adv Mater, 2013, 25 (33): 4673- 4677.
doi: 10.1002/adma.201301530
62 MI H , LI Y , ZHU P , et al. In situ coating of nitrogen-doped graphene-like nanosheets on silicon as a stable anode for high-performance lithium-ion batteries[J]. J Mater Chem: A, 2014, 2 (29): 11254- 11260.
doi: 10.1039/C4TA01876A
63 HU L , WU H , GAO Y , et al. Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity[J]. Advanced Energy Materials, 2011, 1 (4): 523- 527.
doi: 10.1002/aenm.201100056
64 LIU N , WU H , MCDOWELL M T , et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Lett, 2012, 12 (6): 3315- 3321.
doi: 10.1021/nl3014814
65 OGIHARA N , KAWAUCHI S , OKUDA C , et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell[J]. Journal of the Electrochemical Society, 2012, 159 (7): A1034- A1039.
doi: 10.1149/2.057207jes
66 KARKAR Z , JAOUHARI T , TRANCHOT A , et al. How silicon electrodes can be calendered without altering their mechanical strength and cycle life[J]. Journal of Power Sources, 2017, 371 (1): 136- 147.
67 JAISER S , MVLLER M , BAUNACH M , et al. Investigation of film solidification and binder migration during drying of Li-ion battery anodes[J]. Journal of Power Sources, 2016, 318 (1): 210- 219.
68 HAGIWARA H , SUSZYNSKI W J , FRANCIS L F . A Raman spectroscopic method to find binder distribution in electrodes during drying[J]. Journal of Coatings Technology and Research, 2013, 11 (1): 11- 17.
69 ZHENG H , TAN L , LIU G , et al. Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode[J]. Journal of Power Sources, 2012, 208 (1): 52- 57.
70 NGUYEN B P N , CHAZELLE S , CERBELAUD M , et al. Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells[J]. Journal of Power Sources, 2014, 262 (1): 112- 122.
71 WEI L , CHEN C , HOU Z , et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries[J]. Sci Rep, 2016, 6 (1): 19583- 19591.
doi: 10.1038/srep19583
72 CAO P F , NAGUIB M , DU Z , et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10 (4): 3470- 3478.
doi: 10.1021/acsami.7b13205
73 DIEHM R , KUMBERG J , DÖRRER C , et al. In situ investigations of simultaneous two-layer slot die coating of component-graded anodes for improved high-energy Li-ion batteries[J]. Energy Technology, 2020, 8 (5): 1901251.
doi: 10.1002/ente.201901251
74 LIU D , CHEN L C , LIU T J , et al. Improvement of lithium-ion battery performance by two-layered slot-die coating operation[J]. Energy Technology, 2017, 5 (8): 1235- 1241.
doi: 10.1002/ente.201600536
75 CHEN L C , LIU D , LIU T J , et al. Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating[J]. Journal of Energy Storage, 2016, 5 (1): 156- 162.
76 LIU T , LI X , SUN S , et al. Analysis of the relationship between vertical imparity distribution of conductive additive and electrochemical behaviors in lithium ion batteries[J]. Electrochimica Acta, 2018, 269 (1): 422- 428.
77 GUO Z , ZHOU L , YAO H . Improving the electrochemical performance of si-based anode via gradient Si concentration[J]. Materials & Design, 2019, 5 (1): 177- 184.
78 XU Y , YIN G , CHENG X , et al. Enhanced lithium storage performance of silicon anode via fabricating into sandwich electrode[J]. Electrochimica Acta, 2011, 56 (11): 4403- 4407.
doi: 10.1016/j.electacta.2010.11.040
79 YANG Z , XIA Y , JI J , et al. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries[J]. RSC Adv, 2016, 6 (15): 12107- 12113.
doi: 10.1039/C5RA23283J
80 HUANG C , KIM A , CHUNG D J , et al. Multiscale engineered Si/SiOx nanocomposite electrodes for lithium-ion batteries using layer-by-layer spray deposition[J]. ACS Appl Mater Interfaces, 2018, 10 (18): 15624- 15633.
doi: 10.1021/acsami.8b00370
81 WU J , QIN X , ZHANG H , et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode[J]. Carbon, 2015, 84 (1): 434- 443.
82 XIA Y , MATHIS T S , ZHAO M Q , et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557 (7705): 409- 412.
doi: 10.1038/s41586-018-0109-z
83 WANG J , SUN Q , GAO X , et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces, 2018, 10 (46): 39794- 39801.
84 SUN H , MEI L , LIANG J , et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356 (6338): 599- 604.
doi: 10.1126/science.aam5852
85 FU K K , GONG Y , HITZ G T , et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10 (7): 1568- 1575.
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[4] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[5] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[6] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[7] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[8] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[9] 黄成杰, 杨敏, 李红, 任慕苏, 孙晋良. 三维织造预制体微观结构及致密化[J]. 材料工程, 2021, 49(1): 104-111.
[10] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[11] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[12] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[13] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[14] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[15] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn