1 National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China 2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China 3 General Research Institute for Nonferrous Metals, Beijing 100088, China
With the increasing demand for lithium-ion batteries, lithium-ion batteries with high energy density and high power density have become one of the research hotspots. Material modification and new material development can effectively increase the energy density of lithium-ion batteries. In addition, the microstructure parameters of the electrode such as porosity, pore size and distribution, tortuosity and electrode composition distribution are also factors that determine the performance of the electrode and battery. Improving the performance of high specific energy batteries by optimizing the electrode structure design has gradually become the focus of attention. The research progress of porous electrode structure design optimization for lithium ion batteries was reviewed in this article, the design factors and preparation methods of porous electrode structure were summarized. Then the future development of electrode structure design optimization and the promotion of novel preparation technologies for large-scale application in the field of high specific energy lithium ion batteries were prospected in the field of high specific energy lithium ion batteries.
ZHUO H X , LIU Y , WANG Z Y , et al. Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure[J]. Nano Energy, 2021, 83 (25): 303- 318.
2
BEATTIE S D , LARCHER D , MORCRETTE M , et al. Si electrodes for Li-ion batteries—a new way to look at an old problem[J]. Journal of the Electrochemical Society, 2008, 155 (2): A158- A163.
doi: 10.1149/1.2817828
3
YANG G , JIA G , SHANGGUAN X , et al. The synergistic effects of Li2SiO3-coating and Si4+-doping for LiNi0.5Mn0.5O2 cathode materials on the structure and the electrochemical properties[J]. Journal of the Electrochemical Society, 2017, 164 (12): A2889- A2897.
doi: 10.1149/2.0131713jes
4
ZHANG Y , WANG Z B , YU F D , et al. Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery[J]. Journal of Power Sources, 2017, 358 (2): 1- 12.
5
SCHIPPER F , BOUZAGLO H , DIXIT M , et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of Nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials, 2018, 8 (4): 1701682.
doi: 10.1002/aenm.201701682
6
LEE Y S , SHIN W K , KANNAN A G , et al. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Appl Mater Interfaces, 2015, 7 (25): 13944- 13951.
doi: 10.1021/acsami.5b02690
7
WANG Z , LU H Q , YIN Y P , et al. FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for li-ion batteries[J]. Rare Metals, 2015, 36 (11): 899- 904.
8
QING R P , SHI J L , XIAO D D , et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Advanced Energy Materials, 2016, 6 (6): 1501914.
doi: 10.1002/aenm.201501914
9
SOHN H , DONG H K , YI R , et al. Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries[J]. Journal of Power Sources, 2016, 334 (1): 128- 136.
LIU J J , SUN Q Q , HAN X , et al. Preparation of porous silicon material for lithium ion battery anode[J]. Journal of Xiamen University(Nature Science), 2013, 52 (4): 450- 454.
11
KO M , CHAE S , MA J , et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nano Energy, 2016, 1 (9): 16113- 16121.
12
WANG H , XIE J , ZHANG S , et al. Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials[J]. RSC Advances, 2016, 6 (74): 69882- 69888.
doi: 10.1039/C6RA13114J
13
YANG C Y , CHEN J , JI X , et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569 (7755): 245- 250.
doi: 10.1038/s41586-019-1175-6
14
ZHANG H , ZONG P , CHEN M , et al. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries[J]. ACS Nano, 2019, 13 (3): 3054- 3062.
doi: 10.1021/acsnano.8b08088
15
SUN Y , LIU N , CUI Y . Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1 (7): 1- 12.
16
RAMADESIGAN V , METHEKAR R N , LATINWO F , et al. Optimal porosity distribution for minimized ohmic drop across a porous electrode[J]. Journal of the Electrochemical Society, 2010, 157 (12): A1328- A1334.
doi: 10.1149/1.3495992
WU S J , YANG J Y , YU B , et al. Nano/micro structured silicon-based negative materials[J]. Progress in Chemistry, 2018, 30 (2/3): 272- 285.
18
ZHAO H , YANG Q , YUCA N , et al. A convenient and versatile method to control the electrode microstructure toward high-energy lithium-ion batteries[J]. Nano Lett, 2016, 16 (7): 4686- 4690.
doi: 10.1021/acs.nanolett.6b02156
19
JEONG G , LEE S M , CHOI N S , et al. Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity: an in situ electrochemical dilatometric study[J]. Electrochimica Acta, 2011, 56 (14): 5095- 5101.
doi: 10.1016/j.electacta.2011.03.071
20
YU A B , ZOU R P , STANDISH N . Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures[J]. Industrial & Engineering Chemistry Research, 1996, 35 (10): 3730- 3741.
21
ZOU R P , YU A B . Evaluation of the packing characteristics of mono-sized non-spherical particles[J]. Powder Technology, 1996, 88 (1): 71- 79.
doi: 10.1016/0032-5910(96)03106-3
22
LIU Q , ZHANG T , BINDRA C , et al. Effect of morphology and texture on electrochemical properties of graphite anodes[J]. Journal of Power Sources, 1997, 68 (2): 287- 290.
doi: 10.1016/S0378-7753(97)02651-7
23
HEUBNER C , LANGKLOTZ U , MICHAELIS A . Theoretical optimization of electrode design parameters of Si based anodes for lithium-ion batteries[J]. Journal of Energy Storage, 2018, 15 (2): 181- 190.
24
MA J , SUNG J , HONG J , et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes[J]. Nat Commun, 2019, 10 (1): 475- 485.
doi: 10.1038/s41467-018-08233-3
25
OHZEKI K , OHSAKI Y , GOLMAN B , et al. Influence of void-size distribution of anode film made of natural graphite particles on high rate discharge capability of lithium-ion battery[J]. Tanso, 2010, 2004 (213): 140- 143.
26
WU M S , LIAO T L , WANG Y Y , et al. Assessment of the wettability of porous electrodes for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2004, 34 (8): 797- 805.
doi: 10.1023/B:JACH.0000035599.56679.15
27
KüHNEL R S , OBEIDI S , LVBKE M , et al. Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid[J]. Journal of Applied Electrochemistry, 2013, 43 (7): 697- 704.
doi: 10.1007/s10800-013-0558-x
28
SHENG Y. Investigation of electrolyte wetting in lithium ion batteries [D]. Wisconsin: University of Wisconsin-Milwaukee, 2015.
WANG W N , LI C Z , DU J . Influence of negative electrode on electrolyte infiltration and electrical performance of lithium ion battery[J]. Chinese Journal of Power Sources, 2013, 1 (6): 928- 930.
doi: 10.3969/j.issn.1002-087X.2013.06.008
30
QI Y , JANG T , RAMADESIGAN V , et al. Is there a benefit in employing graded electrodes for lithium-ion batteries?[J]. Journal of the Electrochemical Society, 2017, 164 (13): A3196- A3207.
doi: 10.1149/2.1051713jes
31
GOLMON S , MAUTE K , DUNN M L . A design optimization methodology for Li+ batteries[J]. Journal of Power Sources, 2014, 253 (1): 239- 250.
32
DU Z , WOOD D L , DANIEL C , et al. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47 (3): 405- 415.
doi: 10.1007/s10800-017-1047-4
33
LIU L , GUAN P , LIU C . Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (13): A3163- A3173.
doi: 10.1149/2.1021713jes
34
BITSCH B , GALLASCH T , SCHROEDER M , et al. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes[J]. Journal of Power Sources, 2016, 328 (1): 114- 123.
35
COOPER S J , EASTWOOD D S , GELB J , et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247 (1): 1033- 1039.
36
KUANG Y , CHEN C , KIRSCH D , et al. Thick electrode batteries: principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9 (33): 1- 19.
37
VADAKKEPATT A , TREMBACKI B , MATHUR S R , et al. Bruggeman's exponents for effective thermal conductivity of lithium-ion battery electrodes[J]. Journal of the Electrochemical Society, 2015, 163 (2): A119- A130.
38
CHEN WIEGART Y C K , DEMIKE R , ERDONMEZ C , et al. Tortuosity characterization of 3d microstructure at nano-scale for energy storage and conversion materials[J]. Journal of Power Sources, 2014, 249 (1): 349- 356.
39
MOHAMMADIAN S K , ZHANG Y . Improving wettability and preventing Li-ion batteries from thermal runaway using microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 118 (1): 911- 918.
40
DUBESHTER T , SINHA P K , SAKARS A , et al. Measurement of tortuosity and porosity of porous battery electrodes[J]. Journal of the Electrochemical Society, 2014, 161 (4): A599- A605.
doi: 10.1149/2.073404jes
41
LANDESFEIND J , HATTENDORFF J , EHRL A , et al. Tortuosity determination of battery electrodes and separators by impedance spectroscopy[J]. Journal of the Electrochemical Society, 2016, 163 (7): A1373- A1387.
doi: 10.1149/2.1141607jes
42
LANDESFEIND J , ELDIVEN A , GASTEIGER H A . Influence of the binder on lithium ion battery electrode tortuosity and performance[J]. Journal of the Electrochemical Society, 2018, 165 (5): A1122- A1128.
doi: 10.1149/2.0971805jes
43
LANDESFEIND J , EBNER M , ELDIVEN A , et al. Tortuosity of battery electrodes: validation of impedance-derived values and critical comparison with 3D tomography[J]. Journal of the Electrochemical Society, 2018, 165 (3): A469- A476.
doi: 10.1149/2.0231803jes
44
MORASCH R , LANDESFEIND J , SUTHAR B , et al. Detection of binder gradients using impedance spectroscopy and their influence on the tortuosity of Li-ion battery graphite electrodes[J]. Journal of the Electrochemical Society, 2018, 165 (14): A3459- A3467.
doi: 10.1149/2.1021814jes
45
SUTHAR B , LANDESFEIND J , ELDIVEN A , et al. Method to determine the in-plane tortuosity of porous electrodes[J]. Journal of the Electrochemical Society, 2018, 165 (10): A2008- A2018.
doi: 10.1149/2.0121810jes
46
LI L , ERB R M , WANG J , et al. Battery electrodes: fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries[J]. Advanced Energy Materials, 2019, 9 (2): 1- 7.
47
CHENG H M , LI F . Charge delivery goes the distance[J]. Science, 2017, 356 (6338): 582- 583.
doi: 10.1126/science.aan1472
48
EBNER M , WOOD V . Tool for tortuosity estimation in lithium ion battery porous electrodes[J]. Journal of the Electrochemical Society, 2015, 162 (2): A3064- A3070.
doi: 10.1149/2.0111502jes
49
EBNER M , CHUNG D W , GARCÍA R E , et al. Tortuosity anisotropy in lithium-ion battery electrodes[J]. Advanced Energy Materials, 2014, 4 (5): 1- 6.
50
THORAT I V , STEPHENSON D E , ZACHARIAS N A , et al. Quantifying tortuosity in porous Li-ion battery materials[J]. Journal of Power Sources, 2009, 188 (2): 592- 600.
doi: 10.1016/j.jpowsour.2008.12.032
51
DOYLE M . Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of The Electrochemical Society, 1996, 143 (6): 1890- 1903.
doi: 10.1149/1.1836921
52
CHEN C , HU L . Nanocellulose toward advanced energy storage devices: Structure and electrochemistry[J]. ACC Chem Res, 2018, 51 (12): 3154- 3165.
doi: 10.1021/acs.accounts.8b00391
53
BAE C J , ERDONMEZ C K , HALLORAN J W , et al. Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance[J]. Adv Mater, 2013, 25 (9): 1254- 1258.
doi: 10.1002/adma.201204055
54
BEHR S A , CHIANG R , MING Y , et al. Highly-structured, additive-free lithium-ion cathodes by freeze-casting technology[J]. Ceramic Forum International, 2015, 92 (1): 39- 43.
55
SANDER J S , ERB R M , LI L , et al. High-performance battery electrodes via magnetic templating[J]. Nature Energy, 2016, 1 (8): 1- 7.
56
BILLAUD J , BOUVILLE F , MAGRINI T , et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1 (8): 1- 6.
57
ZHAO Z , SUN M , CHEN W , et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance[J]. Advanced Functional Materials, 2019, 29 (16): 1- 13.
58
LU L L , LU Y Y , XIAO Z J , et al. Wood-inspired high-performance ultrathick bulk battery electrodes[J]. Adv Mater, 2018, 30 (20): e1706745- e1706755.
doi: 10.1002/adma.201706745
59
AMIN R , DELATTRE B , TOMSIA A P , et al. Electrochemical characterization of high energy density graphite electrodes made by freeze-casting[J]. ACS Applied Energy Materials, 2018, 1 (9): 4976- 4981.
doi: 10.1021/acsaem.8b00962
60
CHOU S L , ZHAO Y , WANG J Z , et al. Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries[J]. The Journal of Physical Chemistry: C, 2010, 114 (37): 15862- 15867.
doi: 10.1021/jp1063403
61
JI J , JI H , ZHANG L L , et al. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries[J]. Adv Mater, 2013, 25 (33): 4673- 4677.
doi: 10.1002/adma.201301530
62
MI H , LI Y , ZHU P , et al. In situ coating of nitrogen-doped graphene-like nanosheets on silicon as a stable anode for high-performance lithium-ion batteries[J]. J Mater Chem: A, 2014, 2 (29): 11254- 11260.
doi: 10.1039/C4TA01876A
63
HU L , WU H , GAO Y , et al. Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity[J]. Advanced Energy Materials, 2011, 1 (4): 523- 527.
doi: 10.1002/aenm.201100056
64
LIU N , WU H , MCDOWELL M T , et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Lett, 2012, 12 (6): 3315- 3321.
doi: 10.1021/nl3014814
65
OGIHARA N , KAWAUCHI S , OKUDA C , et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell[J]. Journal of the Electrochemical Society, 2012, 159 (7): A1034- A1039.
doi: 10.1149/2.057207jes
66
KARKAR Z , JAOUHARI T , TRANCHOT A , et al. How silicon electrodes can be calendered without altering their mechanical strength and cycle life[J]. Journal of Power Sources, 2017, 371 (1): 136- 147.
67
JAISER S , MVLLER M , BAUNACH M , et al. Investigation of film solidification and binder migration during drying of Li-ion battery anodes[J]. Journal of Power Sources, 2016, 318 (1): 210- 219.
68
HAGIWARA H , SUSZYNSKI W J , FRANCIS L F . A Raman spectroscopic method to find binder distribution in electrodes during drying[J]. Journal of Coatings Technology and Research, 2013, 11 (1): 11- 17.
69
ZHENG H , TAN L , LIU G , et al. Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode[J]. Journal of Power Sources, 2012, 208 (1): 52- 57.
70
NGUYEN B P N , CHAZELLE S , CERBELAUD M , et al. Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells[J]. Journal of Power Sources, 2014, 262 (1): 112- 122.
71
WEI L , CHEN C , HOU Z , et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries[J]. Sci Rep, 2016, 6 (1): 19583- 19591.
doi: 10.1038/srep19583
72
CAO P F , NAGUIB M , DU Z , et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10 (4): 3470- 3478.
doi: 10.1021/acsami.7b13205
73
DIEHM R , KUMBERG J , DÖRRER C , et al. In situ investigations of simultaneous two-layer slot die coating of component-graded anodes for improved high-energy Li-ion batteries[J]. Energy Technology, 2020, 8 (5): 1901251.
doi: 10.1002/ente.201901251
74
LIU D , CHEN L C , LIU T J , et al. Improvement of lithium-ion battery performance by two-layered slot-die coating operation[J]. Energy Technology, 2017, 5 (8): 1235- 1241.
doi: 10.1002/ente.201600536
75
CHEN L C , LIU D , LIU T J , et al. Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating[J]. Journal of Energy Storage, 2016, 5 (1): 156- 162.
76
LIU T , LI X , SUN S , et al. Analysis of the relationship between vertical imparity distribution of conductive additive and electrochemical behaviors in lithium ion batteries[J]. Electrochimica Acta, 2018, 269 (1): 422- 428.
77
GUO Z , ZHOU L , YAO H . Improving the electrochemical performance of si-based anode via gradient Si concentration[J]. Materials & Design, 2019, 5 (1): 177- 184.
78
XU Y , YIN G , CHENG X , et al. Enhanced lithium storage performance of silicon anode via fabricating into sandwich electrode[J]. Electrochimica Acta, 2011, 56 (11): 4403- 4407.
doi: 10.1016/j.electacta.2010.11.040
79
YANG Z , XIA Y , JI J , et al. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries[J]. RSC Adv, 2016, 6 (15): 12107- 12113.
doi: 10.1039/C5RA23283J
80
HUANG C , KIM A , CHUNG D J , et al. Multiscale engineered Si/SiOx nanocomposite electrodes for lithium-ion batteries using layer-by-layer spray deposition[J]. ACS Appl Mater Interfaces, 2018, 10 (18): 15624- 15633.
doi: 10.1021/acsami.8b00370
81
WU J , QIN X , ZHANG H , et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode[J]. Carbon, 2015, 84 (1): 434- 443.
82
XIA Y , MATHIS T S , ZHAO M Q , et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557 (7705): 409- 412.
doi: 10.1038/s41586-018-0109-z
83
WANG J , SUN Q , GAO X , et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces, 2018, 10 (46): 39794- 39801.
84
SUN H , MEI L , LIANG J , et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356 (6338): 599- 604.
doi: 10.1126/science.aam5852
85
FU K K , GONG Y , HITZ G T , et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10 (7): 1568- 1575.