Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 84-93    DOI: 10.11868/j.issn.1001-4381.2021.000273
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响
唐鹏钧1,2, 房立家3, 王兴元1,2, 李沛勇1,2,*(), 张学军1,3
1 中国航发北京航空材料研究院, 北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
3 航发优材(镇江)增材制造有限公司, 江苏 镇江 212132
Effect of artificial ageing on microstructures and mechanical properties of selective laser melted AlMg4.5Sc0.55Mn0.5Zr0.2 alloy
Pengjun TANG1,2, Lijia FANG3, Xingyuan WANG1,2, Peiyong LI1,2,*(), Xuejun ZHANG1,3
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
3 HFYC(Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, Jiangsu, China
全文: PDF(22844 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用激光选区熔化制备AlMg4.5Sc0.55Mn0.5Zr0.2合金,研究人工时效工艺参数对合金维氏硬度的影响规律,分析沉积态和优选时效态合金的室温拉伸性能和显微组织。结果表明:人工时效使该合金的维氏硬度由102HV提升至140HV以上。随着时效温度升高(305~335℃)或时效时间延长(1.5~48 h),维氏硬度呈现先增加、再降低、最后逐渐趋于稳定的规律。在315℃时效3 h或12 h后,合金的室温拉伸性能基本相当,无明显的各向异性;抗拉强度和屈服强度分别达到470 MPa和410 MPa,断后伸长率保持在15.0%。力学性能的提升得益于人工时效过程中弥散析出且与基体共格的纳米增强颗粒Al3(Sc,Zr)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐鹏钧
房立家
王兴元
李沛勇
张学军
关键词 激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金人工时效显微组织力学性能    
Abstract

AlMg4.5Sc0.55Mn0.5Zr0.2 alloys were fabricated by selective laser melting.The effects of artificial ageing parameters on Vickers hardness of the alloy were investigated. The room temperature tensile properties and microstructures of as-built and optimized artificial ageing treated alloys were analyzed. Results indicate that the Vickers hardness of the alloy increases from 102HV to more than 140HV by artificial ageing treatment. As the rising of ageing temperature, ranging from 305℃ to 335℃, or prolongation of the ageing duration, from 1.5 h to 48 h, Vickers hardness presents increasing first, then decreasing and finally trends to be stable. The room temperature tensile properties of the alloys aged at 315℃ for 3 h or 12 h are almost equal, and there is no obvious anisotropy. The ultimate tensile strength and yield strength reach 470 MPa and 410 MPa respectively, with elongation of about 15.0%.The improvement of mechanical properties is due to the dispersion precipitation of nano-reinforced particles Al3(Sc, Zr), which possess a coherent interface with the matrix during artificial ageing.

Key wordsselective laser melting    AlMg4.5Sc0.55Mn0.5Zr0.2 alloy    artificial ageing    microstructure    mechanical property
收稿日期: 2021-03-29      出版日期: 2022-02-23
中图分类号:  TG146.2+1  
通讯作者: 李沛勇     E-mail: pyli@vip.163.com
作者简介: 李沛勇(1967-), 男, 研究员, 博士, 研究方向为气体雾化/粉末冶金技术、粉末铝合金及铝基复合材料、镁合金等, 联系地址: 北京市81信箱2分箱(100095), E-mail: pyli@vip.163.com
引用本文:   
唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
Pengjun TANG, Lijia FANG, Xingyuan WANG, Peiyong LI, Xuejun ZHANG. Effect of artificial ageing on microstructures and mechanical properties of selective laser melted AlMg4.5Sc0.55Mn0.5Zr0.2 alloy. Journal of Materials Engineering, 2022, 50(2): 84-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000273      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/84
Mg Sc Mn Zr Si O Al
4.48 0.55 0.47 0.19 0.093 <0.06 Bal
Table 1  AlMg4.5Sc0.55Mn0.5Zr0.2合金粉末的化学成分(质量分数/%)
Fig.1  AlMg4.5Sc0.55Mn0.5Zr0.2合金粉末的形貌和粒度分布
(a)SEM形貌;(b)粒度分布
Fig.2  激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金试棒示意图
Fig.3  沉积态AlMg4.5Sc0.55Mn0.5Zr0.2合金的DSC曲线
Fig.4  人工时效参数与维氏硬度变化规律
(a)不同温度时效3 h;(b)315 ℃时效不同时间
Fig.5  沉积态和时效态合金的拉伸应力-应变曲线
Alloy State Orientation Rm/MPa Rp0.2/MPa A/% Reference
AlMg4.5Sc0.55Mn0.5Zr0.2 As-built XY 348.5 257.0 23.0 This work
Z 342.0 256.0 23.8 This work
315 ℃/3 h XY 476.0 413.5 14.5 This work
Z 468.5 410.0 14.5 This work
315 ℃/12 h XY 478.5 414.5 14.8 This work
Z 467.0 406.0 16.3 This work
AlMg3.4Sc1.08Mn0.50Cu0.44Zr0.23Si0.14Fe0.08 300 ℃/12 h 486.9 479.0 1.8 [18]
AlMg8.0Sc0.5Zr0.3Si1.3Mn0.5 300 ℃/8 h 550.0 8.0 [24]
360 ℃/8 h 506.0 17.0 [24]
Table 2  不同状态激光选区熔化Al-Mg-Sc合金的室温拉伸性能
Fig.6  沉积态和时效态AlMg4.5Sc0.55Mn0.5Zr0.2合金的XRD图谱及组成相标定
(a)沉积态与不同温度时效3 h;(b)沉积态与315 ℃时效不同时间
Fig.7  沉积态和时效态AlMg4.5Sc0.55Mn0.5Zr0.2合金的金相组织形貌
(a)沉积态,//Z;(b)沉积态,⊥Z;(c)315 ℃时效3 h,//Z;(d)315 ℃时效12 h,//Z
Fig.8  不同状态AlMg4.5Sc0.55Mn0.5Zr0.2合金的EBSD形貌
(a)沉积态;(b)315 ℃时效12 h;(c)晶粒尺寸分布
Fig.9  不同状态AlMg4.5Sc0.55Mn0.5Zr0.2合金的TEM形貌及析出相的高分辨图
(a)沉积态;(b)315 ℃时效3 h;(c)315 ℃时效12 h;(d)析出相形貌;(e)析出相的IFFT图;(f)析出相与基体的SAED图
Fig.10  不同状态合金XY方向拉伸试样的断口形貌
(a)沉积态;(b)315 ℃时效3 h;(c)315 ℃时效12 h
1 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
1 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
2 张家莲, 李发亮, 张海军. 选区激光熔化技术制备金属材料研究进展[J]. 激光与光电子学进展, 2019, 56 (10): 100003.
2 ZHANG J L , LI F L , ZHANG H J . Research progress on preparation of metallic materials by selective laser melting[J]. Laser & Optoelectronics Progress, 2019, 56 (10): 100003.
3 马如龙, 彭超群, 王日初, 等. 选区激光熔化铝合金的研究进展[J]. 中国有色金属学报, 2020, 30 (12): 2773- 2788.
doi: 10.11817/j.ysxb.1004.0609.2020-37780
3 MA R L , PENG C Q , WANG R C , et al. Progress in selective laser melted aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (12): 2773- 2788.
doi: 10.11817/j.ysxb.1004.0609.2020-37780
4 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55 (1): 011402.
4 ZHU H H , LIAO H L . Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55 (1): 011402.
5 WANG P , ECKERT J , PRASHANTH K , et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (8): 2001- 2034.
doi: 10.1016/S1003-6326(20)65357-2
6 WANG Y , SHI J . Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting[J]. Materials Science & Engineering: A, 2020, 788, 139570.
7 唐鹏钧, 房立家, 杨斌, 等. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48 (11): 116- 123.
doi: 10.11868/j.issn.1001-4381.2020.000152
7 TANG P J , FANG L J , YANG B , et al. Microstructure and properties of selective laser melting AlSi7MgTi alloy[J]. Journal of Materials Engineering, 2020, 48 (11): 116- 123.
doi: 10.11868/j.issn.1001-4381.2020.000152
8 侯伟, 陈静, 储松林, 等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45 (7): 0702003.
8 HOU W , CHEN J , CHU S L , et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45 (7): 0702003.
9 闫泰起, 唐鹏钧, 陈冰清, 等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56 (8): 55- 63.
9 YAN T Q , TANG P J , CHEN B Q , et al. Effect of annealing temperature on microstructure and tensile properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56 (8): 55- 63.
10 ZHANG H , GU D , DAI D , et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting[J]. Applied Surface Science, 2020, 509, 145330.
doi: 10.1016/j.apsusc.2020.145330
11 MA R , PENG C , CAI Z , et al. Effect of bimodal microstructure on the tensile properties of selective laser melting Al-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds, 2020, 815, 152422.
doi: 10.1016/j.jallcom.2019.152422
12 SPIERINGS A B , DAWSON K , KERN K , et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science & Engineering: A, 2017, 701, 264- 273.
13 MA R , PENG C , CAI Z , et al. Manipulating the microstructure and tensile properties of selective laser melted Al-Mg-Sc-Zr alloy through heat treatment[J]. Journal of Alloys and Compounds, 2020, 831, 154773.
doi: 10.1016/j.jallcom.2020.154773
14 MA R , PENG C , CAI Z , et al. Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling[J]. Materials Science & Engineering: A, 2020, 775, 138975.
15 SHI Y , ROMETSCH P , YANG K , et al. Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters, 2017, 196, 347- 350.
doi: 10.1016/j.matlet.2017.03.089
16 YANG K V , SHI Y , PALM F , et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scripta Materialia, 2018, 145, 113- 117.
doi: 10.1016/j.scriptamat.2017.10.021
17 SHI Y , YANG K , KAIRY S K , et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an AlMgScZr alloy fabricated by selective laser melting[J]. Materials Science & Engineering: A, 2018, 732, 41- 52.
18 宋立奇, 史运嘉, 蔡彬, 等. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48 (11): 124- 130.
doi: 10.11868/j.issn.1001-4381.2019.000487
18 SONG L Q , SHI Y J , CAI B , et al. Microstructure and properties of high-strength Al-Mg-Sc alloys fabricated by selective laser melting[J]. Journal of Materials Engineering, 2020, 48 (11): 124- 130.
doi: 10.11868/j.issn.1001-4381.2019.000487
19 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47 (5): 0500002.
19 GU D D , ZHANG H M , CHEN H Y , et al. Laser additive manufacturing of high performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47 (5): 0500002.
20 ZHANG H , GU D , DAI D , et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Materials Science & Engineering: A, 2020, 788, 139593.
21 ZHANG H , GU D , YANG J , et al. Selective laser melting of rare earth element Sc modified aluminum alloy: thermodynamics of precipitation behavior and its influence on mechanical properties[J]. Additive Manufacturing, 2018, 23, 1- 12.
doi: 10.1016/j.addma.2018.07.002
22 GU D , ZHANG H , DAI D , et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Corrosion Science, 2020, 170, 108657.
doi: 10.1016/j.corsci.2020.108657
23 LI R , CHEN H , CHEN C , et al. Selective laser melting of gas atomized Al-3.02Mg-0.2Sc-0.1Zr alloy powder: microstructure and mechanical properties[J]. Advanced Engineering Materials, 2018, 21 (3): 1800650.
24 LI R , WANG M , LI Z , et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193, 83- 98.
doi: 10.1016/j.actamat.2020.03.060
25 WANG M , LI R , YUAN T , et al. Microstructures and mechanical property of AlMgScZrMn-a comparison between selective laser melting, spark plasma sintering and cast[J]. Materials Science & Engineering: A, 2019, 756, 354- 364.
26 WANG Z , LIN X , KANG N , et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure[J]. Additive Manufacturing, 2020, 34, 101260.
doi: 10.1016/j.addma.2020.101260
27 MOGUCHEVA A , YUZBEKOVA D , KAIBYSHEV R , et al. Effect of grain refinement on Jerky flow in an Al-Mg-Sc alloy[J]. Metallurgical and Materials Transactions A, 2016, 47, 2093- 2106.
doi: 10.1007/s11661-016-3381-2
28 MAAMOUN A H , ELBESTAWI M , DOSBAEVA G K , et al. Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycle powder[J]. Additive Manufacturing, 2018, 21, 234- 247.
doi: 10.1016/j.addma.2018.03.014
29 THIJS L , KEMPEN K , KRUTH J P , et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61 (5): 1809- 1819.
doi: 10.1016/j.actamat.2012.11.052
30 LI R , WANG M , YUAN T , et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319, 117- 128.
doi: 10.1016/j.powtec.2017.06.050
31 DONG Q , HOWELLS A , LLOYD D J , et al. Effect of solidification cooling rate on kinetics of continuous/discontinuous Al3(Sc, Zr) precipitation and the subsequent age-hardening response in cold-rolled AlMgSc(Zr) sheets[J]. Materials Science & Engineering: A, 2020, 772, 138693.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[5] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[6] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[7] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[8] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[9] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[10] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[11] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[12] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[13] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[14] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[15] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn