1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China 3 HFYC(Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, Jiangsu, China
AlMg4.5Sc0.55Mn0.5Zr0.2 alloys were fabricated by selective laser melting.The effects of artificial ageing parameters on Vickers hardness of the alloy were investigated. The room temperature tensile properties and microstructures of as-built and optimized artificial ageing treated alloys were analyzed. Results indicate that the Vickers hardness of the alloy increases from 102HV to more than 140HV by artificial ageing treatment. As the rising of ageing temperature, ranging from 305℃ to 335℃, or prolongation of the ageing duration, from 1.5 h to 48 h, Vickers hardness presents increasing first, then decreasing and finally trends to be stable. The room temperature tensile properties of the alloys aged at 315℃ for 3 h or 12 h are almost equal, and there is no obvious anisotropy. The ultimate tensile strength and yield strength reach 470 MPa and 410 MPa respectively, with elongation of about 15.0%.The improvement of mechanical properties is due to the dispersion precipitation of nano-reinforced particles Al3(Sc, Zr), which possess a coherent interface with the matrix during artificial ageing.
ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
ZHANG J L , LI F L , ZHANG H J . Research progress on preparation of metallic materials by selective laser melting[J]. Laser & Optoelectronics Progress, 2019, 56 (10): 100003.
MA R L , PENG C Q , WANG R C , et al. Progress in selective laser melted aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (12): 2773- 2788.
doi: 10.11817/j.ysxb.1004.0609.2020-37780
ZHU H H , LIAO H L . Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55 (1): 011402.
5
WANG P , ECKERT J , PRASHANTH K , et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (8): 2001- 2034.
doi: 10.1016/S1003-6326(20)65357-2
6
WANG Y , SHI J . Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting[J]. Materials Science & Engineering: A, 2020, 788, 139570.
TANG P J , FANG L J , YANG B , et al. Microstructure and properties of selective laser melting AlSi7MgTi alloy[J]. Journal of Materials Engineering, 2020, 48 (11): 116- 123.
doi: 10.11868/j.issn.1001-4381.2020.000152
HOU W , CHEN J , CHU S L , et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45 (7): 0702003.
YAN T Q , TANG P J , CHEN B Q , et al. Effect of annealing temperature on microstructure and tensile properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56 (8): 55- 63.
10
ZHANG H , GU D , DAI D , et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting[J]. Applied Surface Science, 2020, 509, 145330.
doi: 10.1016/j.apsusc.2020.145330
11
MA R , PENG C , CAI Z , et al. Effect of bimodal microstructure on the tensile properties of selective laser melting Al-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds, 2020, 815, 152422.
doi: 10.1016/j.jallcom.2019.152422
12
SPIERINGS A B , DAWSON K , KERN K , et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science & Engineering: A, 2017, 701, 264- 273.
13
MA R , PENG C , CAI Z , et al. Manipulating the microstructure and tensile properties of selective laser melted Al-Mg-Sc-Zr alloy through heat treatment[J]. Journal of Alloys and Compounds, 2020, 831, 154773.
doi: 10.1016/j.jallcom.2020.154773
14
MA R , PENG C , CAI Z , et al. Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling[J]. Materials Science & Engineering: A, 2020, 775, 138975.
15
SHI Y , ROMETSCH P , YANG K , et al. Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters, 2017, 196, 347- 350.
doi: 10.1016/j.matlet.2017.03.089
16
YANG K V , SHI Y , PALM F , et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scripta Materialia, 2018, 145, 113- 117.
doi: 10.1016/j.scriptamat.2017.10.021
17
SHI Y , YANG K , KAIRY S K , et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an AlMgScZr alloy fabricated by selective laser melting[J]. Materials Science & Engineering: A, 2018, 732, 41- 52.
SONG L Q , SHI Y J , CAI B , et al. Microstructure and properties of high-strength Al-Mg-Sc alloys fabricated by selective laser melting[J]. Journal of Materials Engineering, 2020, 48 (11): 124- 130.
doi: 10.11868/j.issn.1001-4381.2019.000487
GU D D , ZHANG H M , CHEN H Y , et al. Laser additive manufacturing of high performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47 (5): 0500002.
20
ZHANG H , GU D , DAI D , et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Materials Science & Engineering: A, 2020, 788, 139593.
21
ZHANG H , GU D , YANG J , et al. Selective laser melting of rare earth element Sc modified aluminum alloy: thermodynamics of precipitation behavior and its influence on mechanical properties[J]. Additive Manufacturing, 2018, 23, 1- 12.
doi: 10.1016/j.addma.2018.07.002
22
GU D , ZHANG H , DAI D , et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Corrosion Science, 2020, 170, 108657.
doi: 10.1016/j.corsci.2020.108657
23
LI R , CHEN H , CHEN C , et al. Selective laser melting of gas atomized Al-3.02Mg-0.2Sc-0.1Zr alloy powder: microstructure and mechanical properties[J]. Advanced Engineering Materials, 2018, 21 (3): 1800650.
24
LI R , WANG M , LI Z , et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193, 83- 98.
doi: 10.1016/j.actamat.2020.03.060
25
WANG M , LI R , YUAN T , et al. Microstructures and mechanical property of AlMgScZrMn-a comparison between selective laser melting, spark plasma sintering and cast[J]. Materials Science & Engineering: A, 2019, 756, 354- 364.
26
WANG Z , LIN X , KANG N , et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure[J]. Additive Manufacturing, 2020, 34, 101260.
doi: 10.1016/j.addma.2020.101260
27
MOGUCHEVA A , YUZBEKOVA D , KAIBYSHEV R , et al. Effect of grain refinement on Jerky flow in an Al-Mg-Sc alloy[J]. Metallurgical and Materials Transactions A, 2016, 47, 2093- 2106.
doi: 10.1007/s11661-016-3381-2
28
MAAMOUN A H , ELBESTAWI M , DOSBAEVA G K , et al. Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycle powder[J]. Additive Manufacturing, 2018, 21, 234- 247.
doi: 10.1016/j.addma.2018.03.014
29
THIJS L , KEMPEN K , KRUTH J P , et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61 (5): 1809- 1819.
doi: 10.1016/j.actamat.2012.11.052
30
LI R , WANG M , YUAN T , et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319, 117- 128.
doi: 10.1016/j.powtec.2017.06.050
31
DONG Q , HOWELLS A , LLOYD D J , et al. Effect of solidification cooling rate on kinetics of continuous/discontinuous Al3(Sc, Zr) precipitation and the subsequent age-hardening response in cold-rolled AlMgSc(Zr) sheets[J]. Materials Science & Engineering: A, 2020, 772, 138693.