Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 144-152    DOI: 10.11868/j.issn.1001-4381.2021.000006
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能
李晴1, 钱付平2,*(), 董伟1, 韩云龙1, 鲁进利1
1 安徽工业大学 建筑工程学院, 安徽 马鞍山 243032
2 安徽工业大学 能源与环境学院, 安徽 马鞍山 243002
Preparation and properties of TiO2 superhydrophobic filter media modified by silane coupling agent KH570
Qing LI1, Fuping QIAN2,*(), Wei DONG1, Yunlong HAN1, Jinli LU1
1 School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan 243032, Anhui, China
2 School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui, China
全文: PDF(10964 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过溶胶-凝胶法以钛酸四丁酯为前驱体,醋酸为催化剂制备TiO2溶胶,利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对其进行低表面能修饰,得到疏水改性的TiO2溶胶,然后喷涂到滤料表面使其具有超疏水性。对改性前后滤料的润湿性、表面形貌、化学成分和过滤性能进行分析。结果表明:改性涂层均匀沉积在滤料表面,将纤维表面完整包裹,改性后滤料的水接触角达156.29°。在过滤风速为0.043~0.127 m/s时对粒径为0.3 μm的颗粒进行过滤性能测试,改性后滤料的过滤效率比未改性滤料平均增加2.7672%,过滤品质因数增加0.34%,提高了滤料的过滤性能。此外,在经50次砂纸磨损循环和30 h酸碱溶液浸泡后,疏水滤料仍具有超疏水性。通过清洁煤粉污染的表面发现改性滤料具有优异的自清洁性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晴
钱付平
董伟
韩云龙
鲁进利
关键词 TiO2PET滤料硅烷偶联剂超疏水性能过滤性能表面改性    
Abstract

TiO2 sol was prepared by sol-gel method using tetrabutyl titanate as precursor and acetic acid as catalyst, and then hydrophobically modified TiO2 sol was obtained by reducing its surface energy with γ-methacryloxypropyl trimethoxysilane (KH570), the modified TiO2 sol was sprayed on the surface of the filter media to make it superhydrophobic. The wettability, surface morphology, chemical composition and filtration performance of the filter media before and after modification were analyzed.The results show that the modified coating is uniformly deposited on the surface of the filter media and the fiber surface completely wrapped, and the water contact angle of the modified filter media reaches 156.29°. By testing the filtration performance of the particles with the size of 0.3 μm at the filtration velocity of 0.043-0.127 m/s, it can be seen that the filtration efficiency of the modified filter media is increased by an average of 2.7672% compared with the unmodified filter media, and the filter quality factor is increased by 0.34%, which improves the filtration performance of the filter media. In addition, the hydrophobic filter media still has superhydrophobicity after 50 times of sandpaper abrasion cycles and 30 h acid-base solution immersion. The modified filter media has excellent self-cleaning performance by cleaning the surface of coal powder pollution.

Key wordsTiO2    PET filter media    silane coupling agent    superhydrophobicity property    filtration per-formance    surface modification
收稿日期: 2021-01-04      出版日期: 2022-02-23
中图分类号:  TB322  
基金资助:安徽省科技重大专项资助项目(18030801109)
通讯作者: 钱付平     E-mail: fpingqian@ahut.edu.cn
作者简介: 钱付平(1974-), 男, 教授, 博士, 博士生导师, 研究方向: 冶金烟气污染控制与超低排放, 联系地址: 安徽省马鞍山市雨山区安徽工业大学能源与环境学院(243002), E-mail: fpingqian@ahut.edu.cn
引用本文:   
李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
Qing LI, Fuping QIAN, Wei DONG, Yunlong HAN, Jinli LU. Preparation and properties of TiO2 superhydrophobic filter media modified by silane coupling agent KH570. Journal of Materials Engineering, 2022, 50(2): 144-152.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000006      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/144
Scheme TBOT∶HAc∶H2O∶EtOH
1 1∶3∶9.50∶64.5
2 1∶3∶19.0∶64.5
3 1∶3∶28.5∶64.5
4 1∶3∶38.0∶64.5
Table 1  生成TiO2溶胶的原料摩尔比
Fig.1  改性TiO2溶胶制备的反应过程和涂覆工艺
Fig.2  KH570含量对改性滤料WCA的影响
Fig.3  KH570-TiO2溶胶改性前后滤料的表面形貌
(a)S0;(b)S1;(c)S2;(d)S3;(e)S4;(f)S5;(g)S6
Fig.4  未改性(a)和改性滤料(b)的EDS能谱图
Fig.5  改性前后滤料的红外光谱图
Fig.6  改性前后滤料的过滤效率对比及改性后品质因数增加量
Fig.7  改性后滤料的稳定性测试
Fig.8  WCA随磨损循环的变化
Fig.9  WCA随不同pH值的变化
Fig.10  改性前后滤料的自清洁过程对比
(a)改性前;(b)改性后;(1)自清洁前;(2)自清洁中;(3)自清洁后
1 PARK S , JOE Y H , SHIM J , et al. Non-uniform filtration velocity of process gas passing through a long bag filter[J]. Journal of Hazardous Materials, 2019, 365 (5): 440- 447.
2 ZHU M , HAN J , WANG F , et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials & Engineering, 2016, 302 (1): 1600353.
3 SU J , YANG G H , CHENG C , et al. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation[J]. Journal of Colloid and Interface Science, 2017, 507, 386- 396.
doi: 10.1016/j.jcis.2017.07.104
4 XU Q , WANG G , XIANG C , et al. Preparation of a novel poly (ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal[J]. Separation and Purification Technology, 2020, 257, 117555.
5 BOUDHAN R , JOUBERT A , DURÉCU S , et al. Influence of air humidity on particle filtration performance of a pulse-jet bag filter[J]. Journal of Aerosol Science, 2019, 130, 1- 9.
doi: 10.1016/j.jaerosci.2019.01.002
6 KARIMI L , AZDANSHENAS M E , KHAJAVI R , et al. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal co-tton fabric without toxicity[J]. Cellulose, 2014, 21 (5): 3813- 3827.
doi: 10.1007/s10570-014-0385-1
7 TIGNO S D , HERRERA M U , BALELA M . Hydrophobicity of functionalized TiO2-based kapok nanocomposite[J]. Surface and Coatings Technology, 2018, 350, 857- 862.
doi: 10.1016/j.surfcoat.2018.04.017
8 SAM E K , SAM D K , LV X , et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373, 531- 546.
doi: 10.1016/j.cej.2019.05.077
9 王霞, 王辉, 侯丽, 等. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48 (6): 73- 81.
9 WANG X , WANG H , HOU L , et al. Research progress of super-hydrophobic anti-corrosion coating[J]. Journal of Materials Engineering, 2020, 48 (6): 73- 81.
10 LI X W , SONG R G , JIANG Y , et al. Surface modification of TiO2 nanoparticles and its effect on the properties of fluoropolymer/TiO2 nanocomposite coatings[J]. Applied Surface Science, 2013, 276, 761- 768.
doi: 10.1016/j.apsusc.2013.03.167
11 ZHANG Y , CHEN H , WEN Y , et al. Tunable wettability of monodisperse core-shell nano-SiO2 modified with poly(methylhydrosiloxane) and allyl-poly(ethylene glycol)[J]. Colloids and Surfaces: A, 2014, 441, 16- 24.
doi: 10.1016/j.colsurfa.2013.08.079
12 YANG M P , LIU W Q , JIANG C , et al. Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textile based on TiO2 and fluoroalkylsilane[J]. Journal of Materials Science, 2019, 54, 2079- 2092.
doi: 10.1007/s10853-018-3001-1
13 RAZMJOU A , ARIFIN E , DONG G X , et al. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation[J]. Journal of Membrane Science, 2012, 415/416 (10): 850- 863.
14 ZHOU F , ZHANG Y F , ZHANG D S , et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces: A, 2021, 609, 125686.
doi: 10.1016/j.colsurfa.2020.125686
15 TENG Y , WANG Y , SHI B , et al. Robust superhydrophobic surface fabrication by fluorine-free method on filter paper for oil/water separation[J]. Polymer Testing, 2020, 91, 106810.
doi: 10.1016/j.polymertesting.2020.106810
16 侯根良, 李浩, 毕松, 等. 基于不同粒径SiO2的疏水薄膜制备及其性能[J]. 材料工程, 2020, 48 (2): 32- 37.
16 HOU G L , LI H , BI S , et al. Preparation and properties of hydrophobic films based on SiO2 with different particle sizes[J]. Journal of Materials Engineering, 2020, 48 (2): 32- 37.
17 董伟, 钱付平, 李晴, 等. 聚对苯二甲酸乙二醇酯滤料超疏水表面的制备及性能[J]. 复合材料学报, 2020, 37 (12): 3017- 3025.
17 DONG W , QIAN F P , LI Q , et al. Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37 (12): 3017- 3025.
18 HU C , DUO S , ZHANG R , et al. Nanocrystalline anatase TiO2 prepared via a facile low temperature route[J]. Materials Le-tters, 2010, 64 (19): 2040- 2042.
doi: 10.1016/j.matlet.2010.06.059
19 IBRAHIM S A , SREEKANTAN S . Effect of pH on TiO2 nanoparticles via sol gel method[J]. Advanced Materials Research, 2011, 173, 184- 189.
20 DEJENE F B , ONANI M O , TARUS P K . The effect of rate of hydrolysis on structural and optical properties of the TiO2 nanoparticles prepared by a sol-gel method[J]. Physica B: Condensed Matter, 2016, 480, 213- 218.
doi: 10.1016/j.physb.2015.08.030
21 YANG M P , LIU W Q , JIANG C , et al. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J]. Carbohydrate Polymers, 2018, 197, 75- 82.
doi: 10.1016/j.carbpol.2018.05.075
22 何丽红, 周超, 李力, 等. 硅烷偶联剂表面改性二氧化钛粒子超疏水性能[J]. 精细化工, 2014, 31 (9): 1061- 1064.
22 HE L H , ZHOU C , LI L , et al. Superhydrophobic property of surface modified titanium dioxide with silane coupling agent[J]. Fine Chemicals, 2014, 31 (9): 1061- 1064.
23 WEI B , CHANG Q , BAO C , et al. Surface modification of filter medium particles with silane coupling agent KH550[J]. Colloids and Surfaces: A, 2013, 434, 276- 280.
doi: 10.1016/j.colsurfa.2013.05.069
24 TAKAHIRO A , SANJIAY S L , SURESH W G , et al. self-clea-ning TiO2 coating on cheap, light-weight, flexible polycarbonate substrates[J]. Applied Surface Science, 2018, 458, 917- 923.
doi: 10.1016/j.apsusc.2018.07.172
25 张烨. TiO2纳米粒子的制备及其在织物上的应用[D]. 合肥: 安徽大学, 2012.
25 ZHANG Y. Preparation of TiO2 nanoparticles and its application in fabric[D]. Hefei: Anhui University, 2012.
26 谭秀民, 冯安生, 赵恒勤. 硅烷偶联剂对纳米二氧化硅表面接枝改性研究[J]. 中国粉体技术, 2011, 17 (1): 14- 17.
26 TAN X M , FENG A S , ZHAO H Q . Study on surface grafting modification of nanometer silicon dioxide by silane coupling agent[J]. China Science Powder and Technology, 2011, 17 (1): 14- 17.
27 QING Y , YANG C , SUN Y , et al. Facile fabrication of superhydrophobic surfaces with corrosion resistance by nanocomposite coating of TiO2 and polydimethylsiloxane[J]. Colloids and Surfaces: A, 2015, 484, 471- 477.
doi: 10.1016/j.colsurfa.2015.08.024
28 DALOD A , HENRIKSEN L , GRANDE T , et al. Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents[J]. Beilstein Journal of Nanotechnology, 2017, 8 (1): 304- 312.
29 QUAN C , NIKOLAI N L . Adsorption and interaction of orga-nosilanes on TiO2 nanoparticles[J]. Applied Surface Science, 2010, 257 (5): 1395- 1400.
doi: 10.1016/j.apsusc.2010.08.036
30 MOHANNAD D , ATEFEH H . Surface modification of TiO2nanoparticle by three dimensional silane coupling agent and pre-paration of polyamide/modified-TiO2 nanocomposites for removal of Cr(Ⅵ) from aqueous solutions[J]. Progress in Organic Coa-tings, 2017, 110, 24- 34.
doi: 10.1016/j.porgcoat.2017.04.044
31 CAO B W , WANG S L , DONG W , et al. Investigation of the filtration performance for fibrous media: coupling of a semi-analytical model with CFD on Voronoi-based microstructure[J]. Separation and Purification Technology, 2020, 251, 117364.
doi: 10.1016/j.seppur.2020.117364
32 李为民, 彭超义, 杨金水, 等. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48 (7): 162- 169.
32 LI W M , PENG C Y , YANG J S , et al. Preparation of all-organic superhydrophobic PTFE/epoxy composite coatings[J]. Journal of Materials Engineering, 2020, 48 (7): 162- 169.
33 LIU Y , ZHAO W , GUO X , et al. An investigation of the effect of particle size on discharge behavior of pulverized coal[J]. Powder Technology, 2015, 284, 47- 56.
[1] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[2] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[3] 张坤, 杨玉蓉, 陈飞阳, 齐琪, 张春光, 高帆. W18O49/C-TiO2直接Z型光催化剂的制备及光解水制氢性能[J]. 材料工程, 2021, 49(5): 75-81.
[4] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[5] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[6] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[7] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[10] 金嘉炜, 李国臣, 张冶, 李公义, 楚增勇. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38.
[11] 成明, 杨继凯, 郝志旭, 亢嘉琪, 王新, 王国政, 宦克为. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48(10): 163-168.
[12] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[13] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[14] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[15] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn