1 School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan 243032, Anhui, China 2 School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui, China
TiO2 sol was prepared by sol-gel method using tetrabutyl titanate as precursor and acetic acid as catalyst, and then hydrophobically modified TiO2 sol was obtained by reducing its surface energy with γ-methacryloxypropyl trimethoxysilane (KH570), the modified TiO2 sol was sprayed on the surface of the filter media to make it superhydrophobic. The wettability, surface morphology, chemical composition and filtration performance of the filter media before and after modification were analyzed.The results show that the modified coating is uniformly deposited on the surface of the filter media and the fiber surface completely wrapped, and the water contact angle of the modified filter media reaches 156.29°. By testing the filtration performance of the particles with the size of 0.3 μm at the filtration velocity of 0.043-0.127 m/s, it can be seen that the filtration efficiency of the modified filter media is increased by an average of 2.7672% compared with the unmodified filter media, and the filter quality factor is increased by 0.34%, which improves the filtration performance of the filter media. In addition, the hydrophobic filter media still has superhydrophobicity after 50 times of sandpaper abrasion cycles and 30 h acid-base solution immersion. The modified filter media has excellent self-cleaning performance by cleaning the surface of coal powder pollution.
PARK S , JOE Y H , SHIM J , et al. Non-uniform filtration velocity of process gas passing through a long bag filter[J]. Journal of Hazardous Materials, 2019, 365 (5): 440- 447.
2
ZHU M , HAN J , WANG F , et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials & Engineering, 2016, 302 (1): 1600353.
3
SU J , YANG G H , CHENG C , et al. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation[J]. Journal of Colloid and Interface Science, 2017, 507, 386- 396.
doi: 10.1016/j.jcis.2017.07.104
4
XU Q , WANG G , XIANG C , et al. Preparation of a novel poly (ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal[J]. Separation and Purification Technology, 2020, 257, 117555.
5
BOUDHAN R , JOUBERT A , DURÉCU S , et al. Influence of air humidity on particle filtration performance of a pulse-jet bag filter[J]. Journal of Aerosol Science, 2019, 130, 1- 9.
doi: 10.1016/j.jaerosci.2019.01.002
6
KARIMI L , AZDANSHENAS M E , KHAJAVI R , et al. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal co-tton fabric without toxicity[J]. Cellulose, 2014, 21 (5): 3813- 3827.
doi: 10.1007/s10570-014-0385-1
7
TIGNO S D , HERRERA M U , BALELA M . Hydrophobicity of functionalized TiO2-based kapok nanocomposite[J]. Surface and Coatings Technology, 2018, 350, 857- 862.
doi: 10.1016/j.surfcoat.2018.04.017
8
SAM E K , SAM D K , LV X , et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373, 531- 546.
doi: 10.1016/j.cej.2019.05.077
WANG X , WANG H , HOU L , et al. Research progress of super-hydrophobic anti-corrosion coating[J]. Journal of Materials Engineering, 2020, 48 (6): 73- 81.
10
LI X W , SONG R G , JIANG Y , et al. Surface modification of TiO2 nanoparticles and its effect on the properties of fluoropolymer/TiO2 nanocomposite coatings[J]. Applied Surface Science, 2013, 276, 761- 768.
doi: 10.1016/j.apsusc.2013.03.167
11
ZHANG Y , CHEN H , WEN Y , et al. Tunable wettability of monodisperse core-shell nano-SiO2 modified with poly(methylhydrosiloxane) and allyl-poly(ethylene glycol)[J]. Colloids and Surfaces: A, 2014, 441, 16- 24.
doi: 10.1016/j.colsurfa.2013.08.079
12
YANG M P , LIU W Q , JIANG C , et al. Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textile based on TiO2 and fluoroalkylsilane[J]. Journal of Materials Science, 2019, 54, 2079- 2092.
doi: 10.1007/s10853-018-3001-1
13
RAZMJOU A , ARIFIN E , DONG G X , et al. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation[J]. Journal of Membrane Science, 2012, 415/416 (10): 850- 863.
14
ZHOU F , ZHANG Y F , ZHANG D S , et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces: A, 2021, 609, 125686.
doi: 10.1016/j.colsurfa.2020.125686
15
TENG Y , WANG Y , SHI B , et al. Robust superhydrophobic surface fabrication by fluorine-free method on filter paper for oil/water separation[J]. Polymer Testing, 2020, 91, 106810.
doi: 10.1016/j.polymertesting.2020.106810
HOU G L , LI H , BI S , et al. Preparation and properties of hydrophobic films based on SiO2 with different particle sizes[J]. Journal of Materials Engineering, 2020, 48 (2): 32- 37.
DONG W , QIAN F P , LI Q , et al. Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37 (12): 3017- 3025.
18
HU C , DUO S , ZHANG R , et al. Nanocrystalline anatase TiO2 prepared via a facile low temperature route[J]. Materials Le-tters, 2010, 64 (19): 2040- 2042.
doi: 10.1016/j.matlet.2010.06.059
19
IBRAHIM S A , SREEKANTAN S . Effect of pH on TiO2 nanoparticles via sol gel method[J]. Advanced Materials Research, 2011, 173, 184- 189.
20
DEJENE F B , ONANI M O , TARUS P K . The effect of rate of hydrolysis on structural and optical properties of the TiO2 nanoparticles prepared by a sol-gel method[J]. Physica B: Condensed Matter, 2016, 480, 213- 218.
doi: 10.1016/j.physb.2015.08.030
21
YANG M P , LIU W Q , JIANG C , et al. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J]. Carbohydrate Polymers, 2018, 197, 75- 82.
doi: 10.1016/j.carbpol.2018.05.075
HE L H , ZHOU C , LI L , et al. Superhydrophobic property of surface modified titanium dioxide with silane coupling agent[J]. Fine Chemicals, 2014, 31 (9): 1061- 1064.
23
WEI B , CHANG Q , BAO C , et al. Surface modification of filter medium particles with silane coupling agent KH550[J]. Colloids and Surfaces: A, 2013, 434, 276- 280.
doi: 10.1016/j.colsurfa.2013.05.069
24
TAKAHIRO A , SANJIAY S L , SURESH W G , et al. self-clea-ning TiO2 coating on cheap, light-weight, flexible polycarbonate substrates[J]. Applied Surface Science, 2018, 458, 917- 923.
doi: 10.1016/j.apsusc.2018.07.172
25
张烨. TiO2纳米粒子的制备及其在织物上的应用[D]. 合肥: 安徽大学, 2012.
25
ZHANG Y. Preparation of TiO2 nanoparticles and its application in fabric[D]. Hefei: Anhui University, 2012.
TAN X M , FENG A S , ZHAO H Q . Study on surface grafting modification of nanometer silicon dioxide by silane coupling agent[J]. China Science Powder and Technology, 2011, 17 (1): 14- 17.
27
QING Y , YANG C , SUN Y , et al. Facile fabrication of superhydrophobic surfaces with corrosion resistance by nanocomposite coating of TiO2 and polydimethylsiloxane[J]. Colloids and Surfaces: A, 2015, 484, 471- 477.
doi: 10.1016/j.colsurfa.2015.08.024
28
DALOD A , HENRIKSEN L , GRANDE T , et al. Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents[J]. Beilstein Journal of Nanotechnology, 2017, 8 (1): 304- 312.
29
QUAN C , NIKOLAI N L . Adsorption and interaction of orga-nosilanes on TiO2 nanoparticles[J]. Applied Surface Science, 2010, 257 (5): 1395- 1400.
doi: 10.1016/j.apsusc.2010.08.036
30
MOHANNAD D , ATEFEH H . Surface modification of TiO2nanoparticle by three dimensional silane coupling agent and pre-paration of polyamide/modified-TiO2 nanocomposites for removal of Cr(Ⅵ) from aqueous solutions[J]. Progress in Organic Coa-tings, 2017, 110, 24- 34.
doi: 10.1016/j.porgcoat.2017.04.044
31
CAO B W , WANG S L , DONG W , et al. Investigation of the filtration performance for fibrous media: coupling of a semi-analytical model with CFD on Voronoi-based microstructure[J]. Separation and Purification Technology, 2020, 251, 117364.
doi: 10.1016/j.seppur.2020.117364
LI W M , PENG C Y , YANG J S , et al. Preparation of all-organic superhydrophobic PTFE/epoxy composite coatings[J]. Journal of Materials Engineering, 2020, 48 (7): 162- 169.
33
LIU Y , ZHAO W , GUO X , et al. An investigation of the effect of particle size on discharge behavior of pulverized coal[J]. Powder Technology, 2015, 284, 47- 56.