Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 164-172    DOI: 10.11868/j.issn.1001-4381.2021.000142
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多孔α-Mn2O3的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能
向小倩, 夏强, 廖小刚, 郑林, 李纲(), 胡学步
重庆理工大学 化学化工学院, 重庆 400054
Synthesis of porous α-Mn2O3 and its catalytic performance for activating peroxymonosulfate to degrade methylene blue solution
Xiaoqian XIANG, Qiang XIA, Xiaogang LIAO, Lin ZHENG, Gang LI(), Xuebu HU
College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
全文: PDF(9862 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用草酸盐热分解法制得由微米板堆垛而成的呈无规则颗粒状形貌的多孔α-Mn2O3,探索其作为催化剂活化过一硫酸盐(PMS)降解模拟染料废水亚甲基蓝(MB)溶液的性能。系统考察催化剂的煅烧温度、催化剂投加量、PMS用量和阴离子种类等工艺参数对锰氧化物催化PMS降解MB溶液的影响。结果表明:450℃煅烧温度下所获产物表现出最为优异的活化PMS的能力,α-Mn2O3/PMS体系对MB的降解率达75.88%,而单一PMS或α-Mn2O3对MB的降解率仅为22.19%和5.72%。该催化体系降解500 mL浓度为10 mg/L的MB溶液的优化实验参数为:PMS(0.1 mol/L)用量为3 mL,催化剂投加量为0.05 g,反应50 min后MB的降解率可达83.55%。反应体系中引入C2O42-或PO43-后会对MB溶液的降解产生抑制作用,抑制率分别为49.11%和10.27%,但Cl-的存在对MB降解无影响。此外,借助淬灭实验和电子顺磁共振技术(EPR)对反应体系中存在的活性物种进行鉴定,α-Mn2O3催化PMS可产生·OH,SO4-·,·O2-和单线态氧(1O2),且1O2是参与直接氧化降解MB的最主要活性中间体。动力学分析表明,α-Mn2O3催化活化PMS对MB溶液的降解为二级反应,反应速率常数为3.53 L·mmol-1·min-1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向小倩
夏强
廖小刚
郑林
李纲
胡学步
关键词 草酸盐法α-Mn2O3过一硫酸盐亚甲基蓝单线态氧    
Abstract

Porous α-Mn2O3 with irregular granular morphology stacked from microplates was synthesized through thermal decomposition of oxalate, and its performance as a catalyst to activate peroxymonosulfate(PMS) for degradation of simulated dyestuff wastewater with methylene blue(MB)as main component was explored. Influences of calcination temperature, catalyst addition, PMS dosage and anion species on MB degradation efficiency were investigated.The results show that the product obtained at 450℃ exhibits the most excellent catalytic ability. The degradation ratio of MB is 75.88% in the system of α-Mn2O3/PMS, while its counterpart is only 22.19% and 5.72% for PMS or α-Mn2O3 alone, respectively.The optimization reaction additions for degradation of MB of 500 mL with a concentration of 10 mg/L are: 3 mL of PMS (0.1 mol/L), 0.05 g of α-Mn2O3. At this condition, a MB degradation ratio of 83.55% can be achieved in 50 min. In addition, it is found that introduction of C2O42- or PO43- has a negative effect on MB degradation, whose inhibition rate is 49.11% and 10.27%, respectively. However, Cl- has no inhibitory effect for MB degradation. Furthermore, the active species in the reaction system are identified by the quenching experiments and electron paramagnetic resonance(EPR) tests.The results confirm that there are ·OH, SO4-·, ·O2- and 1O2 in the reaction system, and 1O2 is the most important active intermediate involved in the direct oxidation degradation of MB.Kinetic analysis demonstrates that the degradation of MB solution with PMS catalyzed by α-Mn2O3 is a secondary reaction, and the kinetic reaction rate constant is 3.53 L·mmol-1·min-1.

Key wordsoxalate route    α-Mn2O3    peroxymonosulfate    methylene blue    singlet oxygen
收稿日期: 2021-02-09      出版日期: 2022-02-23
中图分类号:  X131.2  
基金资助:重庆市教委科学技术研究重点项目(KJZD-K201801103);重庆市科技局技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0358);重庆理工大学项目(clgycx20203085);重庆理工大学项目(KLA20031)
通讯作者: 李纲     E-mail: ligang2015@cqut.edu.cn
作者简介: 李纲(1981-), 男, 副教授, 博士, 主要从事纳米功能材料制备及其应用研究, 联系地址: 重庆市巴南区红光大道69号重庆理工大学化学化工学院(400054), E-mail: ligang2015@cqut.edu.cn
引用本文:   
向小倩, 夏强, 廖小刚, 郑林, 李纲, 胡学步. 多孔α-Mn2O3的制备及其催化过一硫酸盐降解亚甲基蓝溶液的性能[J]. 材料工程, 2022, 50(2): 164-172.
Xiaoqian XIANG, Qiang XIA, Xiaogang LIAO, Lin ZHENG, Gang LI, Xuebu HU. Synthesis of porous α-Mn2O3 and its catalytic performance for activating peroxymonosulfate to degrade methylene blue solution. Journal of Materials Engineering, 2022, 50(2): 164-172.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000142      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/164
Fig.1  样品的XRD谱图
Fig.2  前驱体的TG和DTA曲线
Fig.3  样品的SEM图
(a)前驱体;(b)450 ℃产物;(c)550 ℃产物;(d)650 ℃产物
Fig.4  不同煅烧温度所获样品的N2吸附-脱附曲线(a)和相应的孔径分布曲线(b)
Sample Specific surface area/(m2·g-1) Pore volume/(cm3·g-1) Pore size/nm
450 ℃ product 38.47 0.15 11.55
550 ℃ product 20.04 0.08 22.80
650 ℃ product 13.47 0.03 27.17
Table 1  不同煅烧温度下所获Mn2O3样品的物理参数
Fig.5  煅烧温度对Mn2O3催化性能的影响
Fig.6  PMS添加量对MB溶液降解的影响
Fig.7  催化剂投加量对MB溶液降解的影响
Fig.8  阴离子对MB溶液降解的影响
Fig.9  催化剂的重复使用性能
Fig.10  不同猝灭剂作用下MB溶液的降解结果(a)及其降解反应二级动力学曲线(b)
Fig.11  ·OH和SO4-·(a),·O2- (b),1O2(c)的EPR谱图
Fig.12  α-Mn2O3/PMS对MB溶液的降解机理示意图
1 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64 (1): 84- 94.
doi: 10.3969/j.issn.0438-1157.2013.01.011
1 REN N Q , ZHOU X J , GUO W Q , et al. A review on treatment methods of dye wastewater[J]. Journal of Chemical Industry and Engineering, 2013, 64 (1): 84- 94.
doi: 10.3969/j.issn.0438-1157.2013.01.011
2 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 53 (3): 45- 51.
2 ZHANG H C , XIONG G C . Review on the treatment methods of azo dyes wastewater[J]. Dyestuffs and Coloration, 2016, 53 (3): 45- 51.
3 TAN K B , VAKILI M , HORRI B A , et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150, 229- 242.
doi: 10.1016/j.seppur.2015.07.009
4 HUANG Z H , LI Y Z , CHEN W J , et al. Modified bentonite adsorption of organic pollutants of dye wastewater[J]. Materials Chemistry and Physics, 2017, 202, 266- 276.
doi: 10.1016/j.matchemphys.2017.09.028
5 GUO X , AI S S , YANG D , et al. Synergistic photocatalytic and fenton-like degradation of organic contaminants using pexoxymonosulfate activated by CoFe2O4@g-C3N4 composite[J]. Environmental Technology, 2021, 42 (14): 2240- 2253.
doi: 10.1080/09593330.2019.1697378
6 USHANI U , LU X Q , WANG J H , et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the-art review[J]. Chemical Engineering Journal, 2020, 402, 126232.
doi: 10.1016/j.cej.2020.126232
7 SHI P H , SU R J , WAN F Z , et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of orange Ⅱ in water by advanced oxidation technology based on sulfate radicals[J]. Applied Catalysis B: Environmental, 2012, 123/124, 265- 272.
doi: 10.1016/j.apcatb.2012.04.043
8 GUO S , LIU M D , YOU L M , et al. Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe2O3 composites for advanced oxidation of organic pollutants[J]. Chemosphere, 2021, 279, 130482.
doi: 10.1016/j.chemosphere.2021.130482
9 SHARMA J , MISHRA I M , DIONYSIOU D D , et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway[J]. Chemical Engineering Journal, 2015, 276, 193- 204.
doi: 10.1016/j.cej.2015.04.021
10 MAHDI-AHMED M , CHIRON S . Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater[J]. Journal of Hazardous Materials, 2014, 265, 41- 46.
doi: 10.1016/j.jhazmat.2013.11.034
11 刘朝榕, 张静, 张古承, 等. 超声协同双金属Fe-CoOx异相催化PMS的研究[J]. 环境工程, 2017, 35 (1): 59- 64.
doi: 10.3969/j.issn.1674-991X.2017.01.009
11 LIU C R , ZHANG J , ZHANG G C , et al. Research on the activation of PMS by heterogenous catalysts of Fe-CoOx in associated with ultrasonic[J]. Environmental Engineering, 2017, 35 (1): 59- 64.
doi: 10.3969/j.issn.1674-991X.2017.01.009
12 LEE Y , LEE S , CUI M , et al. Activation of peroxodisulfate and peroxymonosulfate by ultrasound with different frequencies: impact on ibuprofen removal efficient, cost estimation and energy analysis[J]. Chemical Engineering Journal, 2021, 413, 127487.
doi: 10.1016/j.cej.2020.127487
13 孙丽娟, 苏义平, 赵志成, 等. 光热协同增强氮化碳锚定FeOx纳米复合材料催化活化过一硫酸盐降解罗丹明B[J]. 材料工程, 2021, 49 (6): 156- 163.
13 SUN L J , SU Y P , ZHAO Z C , et al. Photothermal-assisted activation of peroxymonosulfate with FeOx nanoparticles anchored on carbon nitride for degradation of RhB[J]. Journal of Materials Engineering, 2021, 49 (6): 156- 163.
14 YANG Q J , CHOI H , DIONYSIOU D D . Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the he-terogeneous activation of peroxymonosulfate[J]. Applied Cata-lysis B: Environmental, 2007, 74 (1/2): 170- 178.
15 TAN C Q , GAO N Y , DENG Y , et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as he-terogeneous activator of peroxymonosulfate[J]. Journal of Ha-zardous Materials, 2014, 276, 452- 460.
doi: 10.1016/j.jhazmat.2014.05.068
16 LIU Q R , DUAN X G , SUN H Q , et al. Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxy-monosulfate activation[J]. The Journal of Physical Chemistry C, 2016, 120 (30): 16871- 16878.
doi: 10.1021/acs.jpcc.6b05934
17 KHAN A , ZOU S H , WANG T , et al. Facile synthesis of yolk shell Mn2O3@Mn5O8 as an effective catalyst for peroxymonosulfate activation[J]. Physical Chemistry Chemical Physics, 2018, (20): 13909- 13919.
18 TIAN N , TIAN X K , NIE Y L , et al. Enhanced 2, 4-dichlorophenol degradation at pH 3-11 by peroxymonosulfate via controlling the reactive oxygen species over Ce substituted 3D Mn2O3[J]. Chemical Engineering Journal, 2019, 355, 448- 456.
doi: 10.1016/j.cej.2018.08.183
19 WANG A Q , WANG H , DENG H , et al. Controllable synthesis of mesoporous manganese oxide microsphere efficient for photo-Fenton-like removal of fluoroquinolone antibiotics[J]. Applied Catalysis B: Environmental, 2019, 248, 298- 308.
doi: 10.1016/j.apcatb.2019.02.034
20 FU Z W , WAN H , HU X S , et al. Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area[J]. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 203- 213.
doi: 10.1007/s11144-012-0466-9
21 ZHAO X S , SU F B , YAN Q F , et al. Templating methods for preparation of porous structures[J]. Journal of Materials Che-mistry, 2006, 16 (7): 637- 648.
doi: 10.1039/B513060C
22 HOA M L K , LU M H , ZHANG Y . Preparation of porous materials with ordered hole structure[J]. Advances in Colloid and Interface Science, 2006, 121 (1/3): 9- 23.
23 YU C C , ZHANG L X , SHI J L , et al. A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties[J]. Advanced Functional Materials, 2008, 18 (10): 1544- 1554.
doi: 10.1002/adfm.200701052
24 LI G , LIU X L , BAI W Y . Fabrication of porous MgCo2O4 with rod-like morphology and its superb catalytic activity towards ammonium perchlorate thermal decomposition[J]. Materials Research Express, 2018, 5 (3): 035036.
doi: 10.1088/2053-1591/aab4e7
25 LI G , BAI W Y . Synthesis of hierarchical flower-like Co3O4 superstructure and its excellent catalytic property for ammonium perchlorate decomposition[J]. Chemical Physics, 2018, 506, 45- 51.
26 PARK G C , SEO T Y , PARK C H , et al. Effects of calcination temperature on morphology, microstructure, and photocatalytic performance of TiO2 mesocrystals[J]. Industrial & Engineering Chemistry Research, 2017, 56 (29): 8235- 8240.
27 田东凡, 王玉如, 宋薇, 等. UV/PMS降解水中罗丹明B的动力学及反应机理[J]. 环境科学学报, 2018, 38 (5): 1868- 1876.
27 TIAN D F , WANG Y R , SONG W , et al. Degradation of Rhodamine B in aqueous solution by UV/PMS system: kinetics and reaction mechanism[J]. Chinese Journal of Environmental Science, 2018, 38 (5): 1868- 1876.
28 何勇, 陈瑛, 卢丽娟, 等. 基于UV/H2O2和UV/PS工艺降解水体中磺胺吡啶研究[J]. 应用化工, 2016, 45 (5): 815- 819.
28 HE Y , CHEN Y , LU L J , et al. Degradation of sulfapyridine in aqueous solution by UV/H2O2 and UV/PS technology[J]. App-lied Chemical Industry, 2016, 45 (5): 815- 819.
29 GONG Y , ZHAO X , ZHANG H , et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. App-lied Catalysis B: Environmental, 2018, 233, 35- 45.
30 袁志军. 锰氧化物活化过一硫酸盐降解有机污染物的效能研究[D]. 上海: 东华大学, 2018.
30 YUAN Z J. Degradation effectiveness of organic pollutants with peroxymonosulfate catalyzed by manganese oxides[D]. Shanghai: Donghua University, 2018.
31 LI Y , LI D D , FAN S S , et al. Facile template synthesis of dum-bbell-like Mn2O3 with oxygen vacancies for efficient degradation of organic pollutants by activating peroxymonosulfate[J]. Cata-lysis Science & Technology, 2020, 10 (3): 864- 875.
32 ZHANG J , CHEN M Y , ZHU L . Activation of persulfate by Co3O4 nanoparticles for orange G degradation[J]. RSC Advances, 2016, 6 (1): 758- 768.
33 YANG S D , CHE D . Degradation of aquatic sulfadiazine by Fe0/persulfate: kinetics, mechanisms, and degradation pathway[J]. RSC Advances, 2017, 7 (67): 42233- 42241.
[1] 孙丽娟, 苏义平, 赵志成, 魏启亮, 李颖楷, 李顺. 光热协同增强氮化碳锚定FeOx纳米复合材料催化活化过一硫酸盐降解罗丹明B[J]. 材料工程, 2021, 49(6): 156-163.
[2] 沈慧颖, 吕子豪, 庄粟裕, 曹秀明, 王清清. 静电纺CA/PpIX多孔纤维膜的制备及其光动力性能[J]. 材料工程, 2021, 49(5): 89-97.
[3] 向小倩, 廖小刚, 李纲, 胡学步, 田甜. 分级微/纳结构ZnO的制备及其光催化性能[J]. 材料工程, 2021, 49(4): 150-158.
[4] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn