Because of its light weight, flexibility, and good contact with electrode, solid polymer electrolyte (SPE) has become a potential material for the development of electrochemical devices with high energy density, high safety and high flexibility, and has been paid extensive attention in recent years. However, defects such as low ionic conductivity and poor mechanical properties have also become the problems that limit its further commercialization. It is possible to solve these problems by forming a composite system of polymers by means of crosslinking, blending, copolymerization, etc. Therefore, in this paper, the mechanism of ionic conductivity in polymers was briefly introduced in order to explain the strategies to solve the above problems from the point of principle. Then, the applications and modification strategies of a variety of polymer-based composite electrolytes in electrochemical devices in recent years were reviewed. Finally, the problems of basic research and practical application faced currently by the composite SPEs were discussed and the solutions to these problems were given. It is hoped that this review can provide ideas for the design and preparation of future composite SPEs.
SHAO Q S , YAN W , LI A J , et al. Development, present status and applications of lead-acid battery[J]. Chinese Journal of Nature, 2017, 39 (4): 258- 264.
doi: 10.3969/j.issn.0253-9608.2017.04.004
GE X B , MA Y W , WANG K , et al. Research progress on interface of solid composite electrolyte and anode in lithium-metal batteries[J]. Journal of Materials Engineering, 2021, 49 (6): 33- 43.
3
MA W , CHEN S , YANG S , et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon, 2017, 113, 151- 158.
doi: 10.1016/j.carbon.2016.11.051
4
ARMAND M . Polymersolidelectrolytes-an overview[J]. Solid State Ionics, 1983, 9/10, 745- 754.
doi: 10.1016/0167-2738(83)90083-8
LI Y , DING F , SANG L , et al. Research progress of solid-state batteries[J]. Chinese Journal of Power Sources, 2019, 43 (7): 1085- 1089.
doi: 10.3969/j.issn.1002-087X.2019.07.001
XU L. Research on preparation, modification and electrochemical performance of PEO/PVA polymer solid electrolyte[D]. Mianyang: China Academy of Engineering Physics, 2020.
7
YAO P , YU H , DING Z , et al. Review on polymer-based composite electrolytes for lithium batteries[J]. Frontiers in Chemistry, 2019, 7 (522)
8
YE T , LI L , ZHANG Y . Recent progress in solid electrolytes for energy storage devices[J]. Advanced Functional Materials, 2020, 30 (29): 2000077.
doi: 10.1002/adfm.202000077
9
NGUYEN H D , KIM G T , SHI J , et al. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries[J]. Energy & Environmental Science, 2018, 11 (11): 3298- 3309.
10
WU N , CHIEN P H , LI Y , et al. Fast Li+conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142 (5): 2497- 2505.
doi: 10.1021/jacs.9b12233
11
CAPUANO F , CROCE F , SCROSATI B . Composite polymer electrolytes[J]. Journal of the Electrochemical Society, 1991, 138 (7): 1918- 1922.
doi: 10.1149/1.2085900
12
DUAN H , YIN Y X , SHI Y , et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140 (1): 82- 85.
doi: 10.1021/jacs.7b10864
13
PETROV P , BERLINOVA I , TSVETANOV C B , et al. High-molecular-weight polyoxirane copolymers and their use in high-performance dye-sensitized solar cells[J]. Macromolecular Materials and Engineering, 2008, 293 (7): 598- 604.
doi: 10.1002/mame.200800008
14
FAROOQUI U R , AHMAD A L , HAMID N A . Effect of polyaniline (PANI) on poly(vinylidene fluoride-co-hexaflouro propylene) (PVDF-co-HFP) polymer electrolyte membrane prepared by breath figure method[J]. Polymer Testing, 2017, 60, 124- 131.
doi: 10.1016/j.polymertesting.2017.03.012
15
LEHMANN M L , YANG G , NANDA J , et al. Well-designed crosslinked polymer electrolyte enables high ionic conductivity and enhanced salt solvation[J]. Journal of the Electrochemical Society, 2020, 167 (7): 8.
16
YANG J M , FAN C S , WANG N C , et al. evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes[J]. Electrochimica Acta, 2018, 266, 332- 340.
doi: 10.1016/j.electacta.2018.02.043
17
MATHEW C M , KARTHIKA B , ULAGANATHAN M , et al. Electrochemical analysis on poly(ethyl methacrylate)-based electrolyte membranes[J]. Bulletin of Materials Science, 2015, 38 (1): 151- 156.
doi: 10.1007/s12034-014-0821-8
18
SIVARAJ P , ABHILASH K P , NALINI B , et al. Free-standing, high Li-ion conducting hybrid PAN/PVDF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries[J]. Journal of Solid State Electrochemistry, 2021, 25 (3): 905- 917.
doi: 10.1007/s10008-020-04858-x
19
ZHENG Y , YAO Y , OU J , et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49 (23): 8790- 8839.
doi: 10.1039/D0CS00305K
DING L M , SHI J , MA D Z , et al. Double glass transition and typical VTF characteristics of amorphous comb-like polymer solid electrolytes[J]. Chemical Journal of Chinese Universities, 1996, (10): 1644- 1648.
doi: 10.3321/j.issn:0251-0790.1996.10.029
21
ZHANG J , ZHAO J , YUE L , et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5 (24): 1501082.
doi: 10.1002/aenm.201501082
22
MACGLASHAN G S , ANDREEV Y G , BRUCE P G . Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6[J]. Nature, 1999, 398 (6730): 792- 794.
doi: 10.1038/19730
23
FENTON D E , PARKER J M , WRIGHT P V . Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14 (11): 589.
24
JIN Y , YU H , GAO Y , et al. High safety and long-life lithium batteries with low leakage and high wettability ceramic-polymer electrolyte[J]. Ionics, 2021, 27 (3): 1113- 1123.
doi: 10.1007/s11581-020-03892-z
25
YU X , WANG L , MA J , et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2020, 10 (18): 1903939.
doi: 10.1002/aenm.201903939
26
CHOWDHURY F I , KHALIL I , KHANDAKER M U , et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)-based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells[J]. Ionics, 2020, 26 (9): 4737- 4746.
doi: 10.1007/s11581-020-03612-7
27
SINGH R , JANAKIRAMAN S , KHALIFA M , et al. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery[J]. Journal of Materials Science-Materials in Electronics, 2020, 31 (24): 22912- 22925.
doi: 10.1007/s10854-020-04818-1
28
DEVAUX D , GLE D , PHAN T N T , et al. Optimization of block copolymer electrolytes for lithium metal batteries[J]. Chem Mat, 2015, 27 (13): 4682- 4692.
doi: 10.1021/acs.chemmater.5b01273
29
LIN Z , GUO X , YANG Y , et al. Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery[J]. Journal of Energy Chemistry, 2021, 52, 67- 74.
doi: 10.1016/j.jechem.2020.04.052
30
ZHANG Y , LU W , CONG L , et al. Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery[J]. Journal of Power Sources, 2019, 420, 63- 72.
doi: 10.1016/j.jpowsour.2019.02.090
31
LIN D , LIU W , LIU Y , et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano letters, 2016, 16 (1): 459- 465.
doi: 10.1021/acs.nanolett.5b04117
32
KANG D A , KIM K , KARADE S S , et al. High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte[J]. Chemical Engineering Journal, 2020, 384, 123308.
doi: 10.1016/j.cej.2019.123308
33
WAN J Y , XIE J , KONG X , et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat Nanotechnol, 2019, 14 (7): 705- 711.
doi: 10.1038/s41565-019-0465-3
34
CHEN S , CHE H , FENG F , et al. Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (46): 43056- 43065.
35
ZHAO Y , BAI Y , BAI Y , et al. A rational design of solid polymer electrolyte with high salt concentration for lithium battery[J]. Journal of Power Sources, 2018, 407, 23- 30.
doi: 10.1016/j.jpowsour.2018.10.045
36
CHEN L , FAN L Z . Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15, 37- 45.
doi: 10.1016/j.ensm.2018.03.015
37
WONG T , BRODWIN M , PAPKE B L , et al. Dielectric and conductivity spectra of polyethylene oxide complexes of sodium salt[J]. Solid State Ionics, 1981, 5, 689- 692.
doi: 10.1016/0167-2738(81)90347-7
38
PAPKE B L , RATNER M A , SHRIVER D F . Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts[J]. Journal of Physics and Chemistry of Solids, 1981, 42 (6): 493- 500.
doi: 10.1016/0022-3697(81)90030-5
39
DUPON R , WHITMORE D H , SHRIVER D F . Transference number measurements for the polymer electrolyte poly(ethylene oxide) NaSCN[J]. Journal of the Electrochemical Society, 1981, 128 (3): 715- 717.
doi: 10.1149/1.2127490
40
PAPKE B L , DUPON R , RATNER M A , et al. Ion-pairing in polyether solid electrolytes and its influence on ion transport[J]. Solid State Ionics, 1981, 5, 685- 688.
doi: 10.1016/0167-2738(81)90346-5
41
SHRIVER D F , PAPKE B L , RATNER M A , et al. Structure and ion transport in polymer-salt complexes[J]. Solid State Ionics, 1981, 5, 83- 88.
doi: 10.1016/0167-2738(81)90199-5
42
PAPKE B L , RATNER M A , SHRIVER D F . Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts[J]. Journal of the Electrochemical Society, 1982, 129 (8): 1694- 1701.
doi: 10.1149/1.2124252
43
BERTHIER C , GORECKI W , MINIER M , et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11 (1): 91- 95.
doi: 10.1016/0167-2738(83)90068-1
44
GORECKI W , JEANNIN M , BELORIZKY E , et al. Physical-properties of solid polymer electrolyte PEO(LITFSI) complexes[J]. Journal of Physics-Condensed Matter, 1995, 7 (34): 6823- 6832.
doi: 10.1088/0953-8984/7/34/007
45
KOHJIYA S , IKEDA Y . Polymer solid electrolytes from poly(oxyethylene) derivatives[J]. Materials Science Research International, 1998, 4 (2): 73- 78.
46
FAUTEUX D , PRUD'HOMME J , HARVEY P E . Electrochemical stability and ionic conductivity of some polymer-lix based electrolytes[J]. Solid State Ionics, 1988, 28/30, 923- 928.
doi: 10.1016/0167-2738(88)90305-0
LIU Y L , XIN M Y , CONG L N , et al. Research progress on the interface of polyoxyethylene polymer solid state battery[J]. Acta Physica Sinica, 2020, 69 (22): 79- 98.
WANG R , MEI H , REN W T , et al. New progress of the research on the modification of PEO polymer matrix and its high-performance solid polymer electrolyte materials[J]. Materials Reports, 2016, 30 (11): 63- 67.
49
SCROSATI B , GARCHE J . Lithium batteries: status, prospects and future[J]. Journal of Power Sources, 2010, 195 (9): 2419- 2430.
doi: 10.1016/j.jpowsour.2009.11.048
50
WANG W , YI E , FICI A J , et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121 (5): 2563- 2573.
doi: 10.1021/acs.jpcc.6b11136
WU H , QIU J , CHEN W X , et al. Effect of interaction in allophane/PEO/LiClO4 composite solid polymer electrolyte on crystallization of PEO[J]. Journal of Materials Engineering, 2021, 49 (1): 35- 43.
52
VERMA M L , SAHU H D . Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes[J]. Ionics, 2017, 23 (9): 2339- 2350.
doi: 10.1007/s11581-017-2063-4
53
WU X , CHEN K , YAO Z , et al. Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries[J]. Journal of Power Sources, 2021, 501, 229946.
doi: 10.1016/j.jpowsour.2021.229946
54
YANG T , ZHENG J , CHENG Q , et al. Composite polymer electrolytes with Li7La3Zr2O12garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9 (26): 21773- 21780.
55
WANG X , ZHAI H , QIE B , et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60, 205- 212.
doi: 10.1016/j.nanoen.2019.03.051
56
THIAM A , ANTONELLI C , IOJOIU C , et al. Optimizing ionic conduction of poly(oxyethylene) electrolytes through controlling the cross-link density[J]. Electrochimica Acta, 2017, 240, 307- 315.
doi: 10.1016/j.electacta.2017.04.046
57
LE NEST J F , GANDINI A , CHERADAME H , et al. Influence of lithium perchlorate on the properties of polyether networks: specific volume and glass transition temperature[J]. Macromolecules, 1988, 21 (4): 1117- 1120.
doi: 10.1021/ma00182a044
58
WANG X , SUN J , FENG C , et al. Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2021, 55, 228- 235.
doi: 10.1016/j.jechem.2020.06.070
SUN P , LIAO Y H , LI W S . Research progress on polyacrylonitrile based gel polymer electrolytes for Li-ion batteries[J]. Chinese Battery Industry, 2014, 19 (2): 97- 102.
doi: 10.3969/j.issn.1008-7923.2014.02.010
60
LI C , WANG J , CHANG Z , et al. Preparation and characterization of PAN-LATP composite solid-state electrolyte[J]. Scientia Sinica Chimica, 2018, 48 (8): 964- 971.
doi: 10.1360/N032018-00062
61
HU S , DU L , ZHANG G , et al. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13 (11): 13183- 13190.
WAN A J , TANG Z L . The progress in the plastification of polyacrylonitrile[J]. Polymer Materials Science & Engineering, 2002, (3): 1- 3.
doi: 10.3321/j.issn:1000-7555.2002.03.001
63
HUANG B Y , WANG Z X , LI G B , et al. Lithium ion conduction in polymer electrolytes based on PAN[J]. Solid State Ionics, 1996, 85 (1/4): 79- 84.
MA P L , ZHANG Z H , HAN L , et al. Study on polyacrylonitrile gel polymer electrolyte films reinforced by crosslinking agent and non-woven fabrics[J]. Materials Reports, 2019, 33 (Suppl 1): 457- 461.
65
CHOWDHURY F L , KHALIL I , KHANDAKER M U , et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)-based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells[J]. Ionics, 2020, 26 (9): 4737- 4746.
doi: 10.1007/s11581-020-03612-7
66
CHOWDHURY F I , BURAIDAH M H , AROF A K , et al. Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance[J]. Sol Energy, 2020, 196, 379- 388.
doi: 10.1016/j.solener.2019.12.033
67
JYOTHI N K , VENKATARATNAM K K , MURTY P N , et al. Preparation and characterization of PAN-KI complexed gel polymer electrolytes for solid-state battery applications[J]. Bulletin of Materials Science, 2016, 39 (4): 1047- 1055.
doi: 10.1007/s12034-016-1241-8
68
ZHANG X , LI T , LI P , et al. Performance of flexible supercapacitor based on TEABF4/PAN-b-PEG-b-PAN[J]. New Chemical Materials, 2019, 47 (4): 89- 92.
DENG Y Y. Preparation and study of PAN/TPU/PS gel polymer electrolytes for lithium ion battery[D]. Xiangtan: Xiangtan University, 2017.
70
SAIDI N M , GOH Z L , ARIF H M , et al. Consolidation of ion promoters into quasi solid-state (QSS) polymer electrolytes for dye-sensitized solar cells (DSSCs)[J]. Solid State Ionics, 2021, 363, 115592.
doi: 10.1016/j.ssi.2021.115592
71
VERDIER N , LEPAGE D , ZIDANI R , et al. Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-ion battery[J]. ACS Applied Energy Materials, 2019, 3 (1): 1099- 1110.
XUN Z Y , HOU P , LIU Y , et al. Research progress of polymer electrolytes in supercapacitors[J]. Journal of Materials Engineering, 2019, 47 (11): 71- 83.
doi: 10.11868/j.issn.1001-4381.2019.000346
74
LI D , CHEN L , WANG T S , et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (8): 7069- 7078.
75
XU H , ZHANG X , JIANG J , et al. Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery[J]. Solid State Ionics, 2020, 347, 115227.
doi: 10.1016/j.ssi.2020.115227
LIU H , LIU Q , JIA W , et al. A novel all-solid-state polymer electrolyte based on PEO-PAN-PEO sandwich structure[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55 (4): 833- 837.
doi: 10.3969/j.issn.0490-6756.2018.04.028
77
PAN Q , BARBASH D , SMITH D M , et al. Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries[J]. Advanced Energy Materials, 2017, 7 (22): 1701231.
doi: 10.1002/aenm.201701231
78
WANG X , HAO X , XIA Y , et al. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries[J]. Journal of Membrane Science, 2019, 582, 37- 47.
doi: 10.1016/j.memsci.2019.03.048
79
LIU B , HUANG Y , CAO H , et al. A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method[J]. Journal of Solid State Electrochemistry, 2018, 22 (6): 1771- 1783.
doi: 10.1007/s10008-017-3877-8
80
YANG C C , LIN S J , WU G M . Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes[J]. Materials Chemistry and Physics, 2005, 92 (1): 251- 255.
doi: 10.1016/j.matchemphys.2005.01.022
81
YANG C C , LEE Y J , YANG J M . Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes[J]. Journal of Power Sources, 2009, 188 (1): 30- 37.
doi: 10.1016/j.jpowsour.2008.11.098
ZHANG Z F , MA M Y , WU M Z . Preparation and properties of PVA-AA-KOH-H2O alkaline polymer electrolytes[J]. Journal of Functional Materials, 2010, 41 (Suppl 2): 281- 284.
83
VASSAL N , SALMON E , FAUVARQUE J F . Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO)[J]. Electrochimica Acta, 2000, 45 (8/9): 1527- 1532.
FU J , QIAO J L , MA J X . Preparation and stability of quaternary ammonium based solid alkaline electrolyte membrane for fuel cells[J]. Chemical Journal of Chinese Universities, 2011, 32 (7): 1598- 1604.
85
YANG C C . Study of alkaline nanocomposite polymer electrolytes based on PVA-ZrO2-KOH[J]. Materials Science & Engineering B, 2006, 131 (1/3): 256- 262.
86
WU Q , ZHANG J , SANG S . Preparation of alkaline solid polymer electrolyte based on PVA-TiO2-KOH-H2O and its performance in Zn-Ni battery[J]. Journal of the Physics & Chemistry of Solids, 2008, 69 (11): 2691- 2695.
87
GAO H , LI J , LIAN K . Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors[J]. RSC Advances, 2014, 4 (41): 21332- 21339.
doi: 10.1039/C4RA01014K
88
MOHAMAD A A , MOHAMED N S , ALIAS Y , et al. Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries[J]. Journal of Alloys and Compounds, 2002, 337 (1): 208- 213.
89
MOHAMAD A A , MOHAMED N S , YAHYA M Z A , et al. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells[J]. Solid State Ionics, 2003, 156 (1/2): 171- 177.
90
TRAN T N T , CHUNG H J , IVEY D G . A study of alkaline gel polymer electrolytes for rechargeable zinc-air batteries[J]. Electrochimica Acta, 2019, 327, 135021.
doi: 10.1016/j.electacta.2019.135021
91
LI J , LIAN K . A comparative study of tetraethylammonium hydroxide polymer electrolytes for solid electrochemical capacitors[J]. Polymer, 2016, 99, 140- 146.
doi: 10.1016/j.polymer.2016.07.001
92
LI M , LIU B , FAN X , et al. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (32): 28909- 28917.
93
YOU X , QIAO C , PENG D , et al. Preparation of alkaline polyelectrolyte membrane based on quaternary ammonium salt-modified cellulose and its application in Zn-air flexible battery[J]. Polymers, 2020, 13 (1): 9.
doi: 10.3390/polym13010009
XU Y Y , DU H Y , WU Z M , et al. Poly 3, 4-ethylenedioxythiophene solid state supercapacitor assembled with gel polymer electrolyte[J]. Polymer Materials Science & Engineering, 2020, 36 (6): 48- 54.
95
WANG D C , YU H Y , QI D , et al. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors[J]. ACS Applied Materials & Interfaces, 2019, 11 (27): 24435- 24446.
96
ALJAFARI B , ALAMRO T , RAM M K , et al. Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices[J]. Journal of Solid State Electrochemistry, 2019, 23 (1): 125- 133.
doi: 10.1007/s10008-018-4120-y
97
XIE Y , WANG J . Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte[J]. Journal of Sol-Gel Science and Technology, 2018, 86 (3): 760- 772.
doi: 10.1007/s10971-018-4678-y
98
WANG G , LU X , LING Y , et al. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors[J]. ACS Nano, 2012, 6 (11): 10296- 10302.
doi: 10.1021/nn304178b
WU M D , ZHOU S L , YE A N , et al. High voltage flexible solid state supercapacitor based on neutral hydrogel / oriented carbon nanotube array[J]. Acta Physica Sinica, 2019, 68 (10): 280- 289.
100
ASIM S , JAVED M S , KHAN J , et al. Energy storage performance of binder-free ruthenium-oxide nano-needles based free-standing electrode in neutral pH electrolytes[J]. Electrochimica Acta, 2021, 378, 138139.
doi: 10.1016/j.electacta.2021.138139
101
AZIZ S B , HAMSAN M H , ABDULLAH R , et al. Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes[J]. Ionics, 2020, 26 (4): 1829- 1840.
doi: 10.1007/s11581-020-03498-5
102
AZIZ S B , HAMSAN M H , BRZA M A , et al. Effect of glycerol on EDLC characteristics of chitosan: methylcellulose polymer blend electrolytes[J]. Journal of Materials Research and Technology, 2020, 9 (4): 8355- 8366.
doi: 10.1016/j.jmrt.2020.05.114
103
LI Y , LIU M , DUAN S , et al. A high-voltage hybrid solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries[J]. ACS Applied Energy Materials, 2021, 4 (3): 2318- 2326.
doi: 10.1021/acsaem.0c02846
104
ZHANG J J , ZANG X , WEN H J , et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5 (10): 4940- 4948.
doi: 10.1039/C6TA10066J
105
MA L T , CHEN S M , WANG D H , et al. Super-stretchable zinc air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019, 9 (12): 1803046.
doi: 10.1002/aenm.201803046
106
LIU T , REN X , ZHANG J , et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors[J]. Journal of Power Sources, 2020, 449, 227532.
doi: 10.1016/j.jpowsour.2019.227532
107
MO F , LIANG G , WANG D , et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices[J]. EcoMat, 2019, 1 (1): 12008.
108
WANG Y , CHEN F , LIU Z , et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie International Edition, 2019, 58 (44): 15707- 15711.
doi: 10.1002/anie.201908985
109
LOU D , WANG C , HE Z , et al. Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water[J]. Chemical Communications, 2019, 55 (58): 8422- 8425.
doi: 10.1039/C9CC04239C
110
LI X , LOU D , WANG H , et al. Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property[J]. Advanced Functional Materials, 2020, 30 (52): 2007291.
doi: 10.1002/adfm.202007291
111
QUARTARONE E , MUSTARELLI P . Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40 (5): 2525- 2540.
doi: 10.1039/c0cs00081g
REN C S. Synthesis and electrochemical performance of solid state electrolytes based on polysiloxane grafted polyethylene oxide[D]. Hangzhou: Zhejiang University, 2017.
WANG X Y , LIU S L , YAN X D , et al. Progress on single-ion conducting polymer electrolytes[J]. Advances in New and Renewable Energy, 2020, 8 (5): 402- 412.
doi: 10.3969/j.issn.2095-560X.2020.05.009
114
THOMAS K E , SLOOP S E , KERR J B , et al. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers[J]. Journal of Power Sources, 2000, 89 (2): 132- 138.
doi: 10.1016/S0378-7753(00)00420-1
115
DOYLE M , NEWMAN J . The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochimica Acta, 1995, 40 (13/14): 2191- 2196.
116
DOYLE M , FULLER T F , NEWMAN J . The importance of the lithium ion transference number in lithium/polymer cells[J]. Electrochimica Acta, 1994, 39 (13): 2073- 2081.
doi: 10.1016/0013-4686(94)85091-7
117
CHAZALVIEL J N . Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42 (12): 7355- 7367.
doi: 10.1103/PhysRevA.42.7355
118
ROLLAND J , POGGI E , VLAD A , et al. Single-ion diblock copolymers for solid-state polymer electrolytes[J]. Polymer, 2015, 68, 344- 352.
doi: 10.1016/j.polymer.2015.04.056
119
DING Y , SHEN X , ZENG J , et al. Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene fluoride)[J]. Solid State Ionics, 2018, 323, 16- 24.
doi: 10.1016/j.ssi.2018.05.009
ZHANG H , ZHENG L P , NIE J , et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry, 2014, 26 (6): 1005- 1020.
121
BANNISTER D J , DAVIES G R , WARD I M , et al. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers[J]. Polymer, 1984, 25 (9): 1291- 1296.
doi: 10.1016/0032-3861(84)90378-1
122
OLMEDO-MARTíNEZ J L , PORCARELLI L , ALEGRíA Á , et al. High lithium conductivity of miscible poly(ethylene oxide)/methacrylic sulfonamide anionic polyelectrolyte polymer blends[J]. Macromolecules, 2020, 53 (11): 4442- 4453.
doi: 10.1021/acs.macromol.0c00703
123
MERRILL L C , CHEN X C , ZHANG Y , et al. Polymer-ceramic composite electrolytes for lithium batteries: a comparison between the single-ion-conducting polymer matrix and its counterpart[J]. ACS Applied Energy Materials, 2020, 3 (9): 8871- 8881.
doi: 10.1021/acsaem.0c01358
124
CHEN Y , LI C , YE D , et al. Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries[J]. Journal of Membrane Science, 2021, 620, 118926.
doi: 10.1016/j.memsci.2020.118926
125
ZHENG J , SCHKERYANTZ L , GOURDIN G , et al. Single potassium-ion conducting polymer electrolytes: preparation, ionic conductivities, and electrochemical stability[J]. ACS Applied Energy Materials, 2021, 4 (4): 4156- 4164.
doi: 10.1021/acsaem.1c00483
126
ZHAO H , JIA Z , YUAN W , et al. Fumed silica-based single-ion nanocomposite electrolyte for lithium batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19335- 19341.
127
ROHAN R , PAREEK K , CHEN Z , et al. A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (40): 20267- 20276.
doi: 10.1039/C5TA02628H
128
MEHTA M A , FUJINAMI T . Novel inorganic-organic polymer electrolytes-preparation and properties[J]. Solid State Ionics, 1998, 113, 187- 192.
129
DAI K , MA C , FENG Y , et al. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7 (31): 18547- 18557.
doi: 10.1039/C9TA05938E
130
PARK S S , TULCHINSKY Y , DINCA M . Single-ion Li+, Na+, and Mg2+solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139 (38): 13260- 13263.
doi: 10.1021/jacs.7b06197
131
BLAZEJCZYK A , SZCZUPAK M , WIECZOREK W , et al. Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes[J]. Chemistry of Materials, 2005, 17 (6): 1535- 1547.
doi: 10.1021/cm048679j
132
KALITA M , BUKAT M , CIOSEK M , et al. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes[J]. Electrochimica Acta, 2005, 50 (19): 3942- 3948.
doi: 10.1016/j.electacta.2005.02.067
133
KAYNAK M , YUSUF A , AYDIN H , et al. Enhanced ionic conductivity in borate ester plasticized polyacrylonitrile electrolytes for lithium battery application[J]. Electrochimica Acta, 2015, 164, 108- 113.
doi: 10.1016/j.electacta.2015.02.214
134
LIU T , CHANG Z , YIN Y , et al. The PVDF-HFP gel polymer electrolyte for Li-O2 battery[J]. Solid State Ionics, 2018, 318, 88- 94.
doi: 10.1016/j.ssi.2017.08.001
135
ZHANG X , LIU T , ZHANG S F , et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139 (39): 1379- 13785.
136
BAG S , ZHOU C , KIM P J , et al. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Materials, 2020, 24, 198- 207.
doi: 10.1016/j.ensm.2019.08.019
137
SUN Y , ZHAN X , HU J , et al. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12fillers for composite polymer electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11 (13): 12467- 12475.
138
LI B , SU Q , YU L , et al. Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity[J]. Applied Surface Science, 2021, 541, 148434.
doi: 10.1016/j.apsusc.2020.148434
WAG Y Y , QIAO Q D . Research progress on chemical modification of PVDF-HFP based composite polymer electrolyte[J]. New Chemical Materials, 2018, 46 (2): 17- 21.
CHEN S H , LIU X W , FENG T Z , et al. Effects of temperature on structure and properties of PVDF-HFP-based porous polymer electrolyte membranes prepared by non-solvent evaporate method[J]. Energy Storage Science and Technology, 2017, 6 (3): 590- 595.
141
LUO K , SHAO D , YANG L , et al. Semi-interpenetrating gel polymer electrolyte based on PVDF-HFP for lithium ion batteries[J]. Journal of Applied Polymer Science, 2021, 138 (11): 49993.
doi: 10.1002/app.49993
142
XIAO Q , CHEN Y , LI Q , et al. Preparation and performance of poly(vinylidene fluoride)-based crosslinked gel polymer electrolytes[J]. Polymer Materials Science & Engineering, 2020, 36 (8): 1- 10.
143
AHMAD A L , FAROOQUI U R , HAMID N A . Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries[J]. RSC Advances, 2018, 8 (45): 25725- 25733.
doi: 10.1039/C8RA03918F
144
WANG X , LIU Z , TANG Y , et al. PVDF-HFP/PMMA/TPU-based gel polymer electrolytes composed of conductive Na3Zr2Si2PO12 filler for application in sodium ions batteries[J]. Solid State Ionics, 2021, 359, 115532.
doi: 10.1016/j.ssi.2020.115532
145
KHAN S , FANG C Y , MA Y C , et al. High-performance PVDF-HFP based gel polymer electrolyte modified by core-shell SiO2-PMMA for electrochromic devices[J]. Journal of the Electrochemical Society, 2021, 168 (2): 0225047.
146
PAN Z , YANG J , ZHANG Q , et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9 (9): 1802753.
doi: 10.1002/aenm.201802753