Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 15-35    DOI: 10.11868/j.issn.1001-4381.2021.000442
  储能材料专栏 本期目录 | 过刊浏览 | 高级检索 |
固态电解质中的聚合物复合体系研究进展
董常熠, 于德梅()
西安交通大学 化学学院,西安 710049
Research progress of polymer composite system in solid electrolyte
Changyi DONG, Demei YU()
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(9599 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董常熠
于德梅
关键词 固态电解质聚合物复合体系结构性能    
Abstract

Because of its light weight, flexibility, and good contact with electrode, solid polymer electrolyte (SPE) has become a potential material for the development of electrochemical devices with high energy density, high safety and high flexibility, and has been paid extensive attention in recent years. However, defects such as low ionic conductivity and poor mechanical properties have also become the problems that limit its further commercialization. It is possible to solve these problems by forming a composite system of polymers by means of crosslinking, blending, copolymerization, etc. Therefore, in this paper, the mechanism of ionic conductivity in polymers was briefly introduced in order to explain the strategies to solve the above problems from the point of principle. Then, the applications and modification strategies of a variety of polymer-based composite electrolytes in electrochemical devices in recent years were reviewed. Finally, the problems of basic research and practical application faced currently by the composite SPEs were discussed and the solutions to these problems were given. It is hoped that this review can provide ideas for the design and preparation of future composite SPEs.

Key wordssolid electrolyte    polymer    composite    structure    property
收稿日期: 2021-05-10      出版日期: 2022-04-18
中图分类号:  TB3  
基金资助:国家自然科学基金项目(51473133)
通讯作者: 于德梅     E-mail: dmyu@mail.xjtu.edu.cn
作者简介: 于德梅(1962—),女,教授,博士,研究方向为高分子功能材料,联系地址:陕西省西安市长安区西安交通大学创新港校区19号楼3126(710049),E-mail: dmyu@mail.xjtu.edu.cn
引用本文:   
董常熠, 于德梅. 固态电解质中的聚合物复合体系研究进展[J]. 材料工程, 2022, 50(4): 15-35.
Changyi DONG, Demei YU. Research progress of polymer composite system in solid electrolyte. Journal of Materials Engineering, 2022, 50(4): 15-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000442      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/15
Fig.1  固态聚合物电解质导电机理示意
(a)晶体空位扩散模型;(b)非晶区扩散模型
Composition Modification strategy Ionic conductivity/(mS·cm-1) Electrochemical window Tensile strength/MPa Thermal stability/℃ Reference
PEO+LiTFSI (EO/Li+=10:1(mass ratio)/25%(mass fraction, the same below)LZP Blending 0.12 (30 ℃) 4.7 V vs Li+/Li [10]
PVDF+PEO (PVDF: PEO=7:3(mass ratio))+LiPF6/10% γ-Al2O3 Blending 0.66 (25 ℃) 5.5 V vs Li+/Li 355 [24]
65% PAN+10% PVDF+15% LiClO4/10% LLTO Blending 1.43 (25 ℃) 4.89 V vs Li+/Li 500 [18]
0.405 g PVDF+0.27 g PVAC+0.225 g LiClO4/10% LLZTO Blending 0.48 (25 ℃) 4.8 V vs Li+/Li 160 [25]
0.27 g PAN+0.069 g I2/1.02 g EC+ 1.02 g PC+1.00 g TBAI Gelating 3.46 (25 ℃) 2.2 V vs I3-/I- 190 [26]
PAN/PC+Mg(ClO4)2 Gelating 3.28 (30 ℃) 4.6 V vs Mg2+/Mg 100 [27]
PS-PEO-PS+LiTFSI (EO/Li+=30: 1 (mass ratio)) Copolymerization 0.255 (60 ℃) 3.8 V vs Li+/Li [28]
PEG-HDIt+LiFSI Copolymerization 0.57 (55 ℃) 4.65 V vs Li+/Li 2.1 [29]
P(EO-TEGDME)+LiTFSI (EO/Li+= 20:1)/TEGDMA Cross-linking 0.27 (24 ℃) 5 V vs Li+/Li 120 [30]
PEGDGE+PEI+LiTFSI (EO/Li+=1:12 (mass ratio))/20% TEGDME Cross-linking, Plasticizing 1.2 (80 ℃) 4.5 V vs Li+/Li 0.418 150 [15]
PEO+LiClO4 (EO/Li+=8:1(mass ratio))/10% SiO2 Grafting 1.2 (60 ℃) 5.5 V vs Li+/Li [31]
PEGBEM-g-PAEMA (PEGBEM/AEMA= 7:3 (mole ratio))/200% EMIMBF4 Grafting 1.23 (25 ℃) 197 [32]
PI/PEO+LiTFSI (EO/Li+=10:1 (mass ratio)) Mixture-phase structure 0.23 (30 ℃) 40 [33]
PVC+NaTf/PVDF-HFP Mixture-phase structure 0.12 (25 ℃) 5.3 V vs Na+/Na 8.9 200 [34]
PVDF-HFP+PEC+80% LiTFSI Polymer-in-salt 0.108 (30 ℃) 4.5 V vs Li+/Li [35]
Polysiloxane +LiTFSI (1:1.5 (mass ratio))/10%PVDF Polymer-in-salt 0.4 (25 ℃) 4.7 V vs Li+/Li 6.8 160 [36]
Table 1  一些聚合物的改性策略及其性能表征结果
Fig.2  双层电解质固态电池整体设计图[78]
Fig.3  凝胶电解质Rp(a)和Rct(b)随时间变化关系图[79]
Fig.4  不同种类碱盐对PVA凝胶电解质离子传输性能的影响
(a)PVA凝胶中盐的种类与浓度变化对离子电导率的影响[80];(b)KOH-PVA凝胶和TEAOH-PVA凝胶离子电导率随时间的变化关系[87]
Fig.5  TEAOH-PVA凝胶及KOH-PVA凝胶存放不同时间后的放电曲线对比[92]
(a)新制;(b)5天后;(c)10天后;(d)15天后
Fig.6  两种酸性PVA凝胶电解质中的电荷储存机理[96]
(a)PVA-H2SO4凝胶电解质;(b)PVA-H3PO4凝胶电解质
Fig.7  用MBAA(交联剂)、丙烯酸酯(AA)和纤维素(增强剂)合成PANa-纤维素水凝胶电解质的工艺[105]
Fig.8  包覆PDMS弹性体涂层的水凝胶切面SEM图[107]
Fig.9  单离子导电多嵌段共聚物的分子结构[9]
Fig.10  有机无机杂化型SICPE设计思路
(a)在SiO2颗粒表面共聚4-苯乙烯磺酸锂和PEGMA后锂化[126];(b)Rohan等合成的单离子导电聚合物[127]
Fig.11  高介电常数聚合物组成的复合固态电解质
(a)PVDF-SPE和PVDF-LLZTO CPE的拉曼光谱[135];(b)含有不同尺寸LLZO的PVDF基CPE离子电导率对比[137];(c)PVDF-HFP分子结构图;(d)三维半互穿凝胶聚合物电解质合成示意图[141]
1 邵勤思, 颜蔚, 李爱军, 等. 铅酸蓄电池的发展、现状及其应用[J]. 自然杂志, 2017, 39 (4): 258- 264.
doi: 10.3969/j.issn.0253-9608.2017.04.004
1 SHAO Q S , YAN W , LI A J , et al. Development, present status and applications of lead-acid battery[J]. Chinese Journal of Nature, 2017, 39 (4): 258- 264.
doi: 10.3969/j.issn.0253-9608.2017.04.004
2 葛性波, 马衍伟, 王凯, 等. 锂金属电池中复合固态电解质与负极界面的研究进展[J]. 材料工程, 2021, 49 (6): 33- 43.
2 GE X B , MA Y W , WANG K , et al. Research progress on interface of solid composite electrolyte and anode in lithium-metal batteries[J]. Journal of Materials Engineering, 2021, 49 (6): 33- 43.
3 MA W , CHEN S , YANG S , et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon, 2017, 113, 151- 158.
doi: 10.1016/j.carbon.2016.11.051
4 ARMAND M . Polymersolidelectrolytes-an overview[J]. Solid State Ionics, 1983, 9/10, 745- 754.
doi: 10.1016/0167-2738(83)90083-8
5 李杨, 丁飞, 桑林, 等. 固态电池研究进展[J]. 电源技术, 2019, 43 (7): 1085- 1089.
doi: 10.3969/j.issn.1002-087X.2019.07.001
5 LI Y , DING F , SANG L , et al. Research progress of solid-state batteries[J]. Chinese Journal of Power Sources, 2019, 43 (7): 1085- 1089.
doi: 10.3969/j.issn.1002-087X.2019.07.001
6 徐玲. PEO/PVA聚合物固态电解质的制备、改性及电化学性能的研究[D]. 绵阳: 中国工程物理研究院, 2020.
6 XU L. Research on preparation, modification and electrochemical performance of PEO/PVA polymer solid electrolyte[D]. Mianyang: China Academy of Engineering Physics, 2020.
7 YAO P , YU H , DING Z , et al. Review on polymer-based composite electrolytes for lithium batteries[J]. Frontiers in Chemistry, 2019, 7 (522)
8 YE T , LI L , ZHANG Y . Recent progress in solid electrolytes for energy storage devices[J]. Advanced Functional Materials, 2020, 30 (29): 2000077.
doi: 10.1002/adfm.202000077
9 NGUYEN H D , KIM G T , SHI J , et al. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries[J]. Energy & Environmental Science, 2018, 11 (11): 3298- 3309.
10 WU N , CHIEN P H , LI Y , et al. Fast Li+conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142 (5): 2497- 2505.
doi: 10.1021/jacs.9b12233
11 CAPUANO F , CROCE F , SCROSATI B . Composite polymer electrolytes[J]. Journal of the Electrochemical Society, 1991, 138 (7): 1918- 1922.
doi: 10.1149/1.2085900
12 DUAN H , YIN Y X , SHI Y , et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140 (1): 82- 85.
doi: 10.1021/jacs.7b10864
13 PETROV P , BERLINOVA I , TSVETANOV C B , et al. High-molecular-weight polyoxirane copolymers and their use in high-performance dye-sensitized solar cells[J]. Macromolecular Materials and Engineering, 2008, 293 (7): 598- 604.
doi: 10.1002/mame.200800008
14 FAROOQUI U R , AHMAD A L , HAMID N A . Effect of polyaniline (PANI) on poly(vinylidene fluoride-co-hexaflouro propylene) (PVDF-co-HFP) polymer electrolyte membrane prepared by breath figure method[J]. Polymer Testing, 2017, 60, 124- 131.
doi: 10.1016/j.polymertesting.2017.03.012
15 LEHMANN M L , YANG G , NANDA J , et al. Well-designed crosslinked polymer electrolyte enables high ionic conductivity and enhanced salt solvation[J]. Journal of the Electrochemical Society, 2020, 167 (7): 8.
16 YANG J M , FAN C S , WANG N C , et al. evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes[J]. Electrochimica Acta, 2018, 266, 332- 340.
doi: 10.1016/j.electacta.2018.02.043
17 MATHEW C M , KARTHIKA B , ULAGANATHAN M , et al. Electrochemical analysis on poly(ethyl methacrylate)-based electrolyte membranes[J]. Bulletin of Materials Science, 2015, 38 (1): 151- 156.
doi: 10.1007/s12034-014-0821-8
18 SIVARAJ P , ABHILASH K P , NALINI B , et al. Free-standing, high Li-ion conducting hybrid PAN/PVDF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries[J]. Journal of Solid State Electrochemistry, 2021, 25 (3): 905- 917.
doi: 10.1007/s10008-020-04858-x
19 ZHENG Y , YAO Y , OU J , et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49 (23): 8790- 8839.
doi: 10.1039/D0CS00305K
20 丁黎明, 石晶, 马德柱, 等. 无定形梳状高分子固体电解质的二重玻璃化转变及典型VTF特征[J]. 高等学校化学学报, 1996, (10): 1644- 1648.
doi: 10.3321/j.issn:0251-0790.1996.10.029
20 DING L M , SHI J , MA D Z , et al. Double glass transition and typical VTF characteristics of amorphous comb-like polymer solid electrolytes[J]. Chemical Journal of Chinese Universities, 1996, (10): 1644- 1648.
doi: 10.3321/j.issn:0251-0790.1996.10.029
21 ZHANG J , ZHAO J , YUE L , et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5 (24): 1501082.
doi: 10.1002/aenm.201501082
22 MACGLASHAN G S , ANDREEV Y G , BRUCE P G . Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6[J]. Nature, 1999, 398 (6730): 792- 794.
doi: 10.1038/19730
23 FENTON D E , PARKER J M , WRIGHT P V . Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14 (11): 589.
24 JIN Y , YU H , GAO Y , et al. High safety and long-life lithium batteries with low leakage and high wettability ceramic-polymer electrolyte[J]. Ionics, 2021, 27 (3): 1113- 1123.
doi: 10.1007/s11581-020-03892-z
25 YU X , WANG L , MA J , et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2020, 10 (18): 1903939.
doi: 10.1002/aenm.201903939
26 CHOWDHURY F I , KHALIL I , KHANDAKER M U , et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)-based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells[J]. Ionics, 2020, 26 (9): 4737- 4746.
doi: 10.1007/s11581-020-03612-7
27 SINGH R , JANAKIRAMAN S , KHALIFA M , et al. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery[J]. Journal of Materials Science-Materials in Electronics, 2020, 31 (24): 22912- 22925.
doi: 10.1007/s10854-020-04818-1
28 DEVAUX D , GLE D , PHAN T N T , et al. Optimization of block copolymer electrolytes for lithium metal batteries[J]. Chem Mat, 2015, 27 (13): 4682- 4692.
doi: 10.1021/acs.chemmater.5b01273
29 LIN Z , GUO X , YANG Y , et al. Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery[J]. Journal of Energy Chemistry, 2021, 52, 67- 74.
doi: 10.1016/j.jechem.2020.04.052
30 ZHANG Y , LU W , CONG L , et al. Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery[J]. Journal of Power Sources, 2019, 420, 63- 72.
doi: 10.1016/j.jpowsour.2019.02.090
31 LIN D , LIU W , LIU Y , et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano letters, 2016, 16 (1): 459- 465.
doi: 10.1021/acs.nanolett.5b04117
32 KANG D A , KIM K , KARADE S S , et al. High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte[J]. Chemical Engineering Journal, 2020, 384, 123308.
doi: 10.1016/j.cej.2019.123308
33 WAN J Y , XIE J , KONG X , et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat Nanotechnol, 2019, 14 (7): 705- 711.
doi: 10.1038/s41565-019-0465-3
34 CHEN S , CHE H , FENG F , et al. Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (46): 43056- 43065.
35 ZHAO Y , BAI Y , BAI Y , et al. A rational design of solid polymer electrolyte with high salt concentration for lithium battery[J]. Journal of Power Sources, 2018, 407, 23- 30.
doi: 10.1016/j.jpowsour.2018.10.045
36 CHEN L , FAN L Z . Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15, 37- 45.
doi: 10.1016/j.ensm.2018.03.015
37 WONG T , BRODWIN M , PAPKE B L , et al. Dielectric and conductivity spectra of polyethylene oxide complexes of sodium salt[J]. Solid State Ionics, 1981, 5, 689- 692.
doi: 10.1016/0167-2738(81)90347-7
38 PAPKE B L , RATNER M A , SHRIVER D F . Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts[J]. Journal of Physics and Chemistry of Solids, 1981, 42 (6): 493- 500.
doi: 10.1016/0022-3697(81)90030-5
39 DUPON R , WHITMORE D H , SHRIVER D F . Transference number measurements for the polymer electrolyte poly(ethylene oxide) NaSCN[J]. Journal of the Electrochemical Society, 1981, 128 (3): 715- 717.
doi: 10.1149/1.2127490
40 PAPKE B L , DUPON R , RATNER M A , et al. Ion-pairing in polyether solid electrolytes and its influence on ion transport[J]. Solid State Ionics, 1981, 5, 685- 688.
doi: 10.1016/0167-2738(81)90346-5
41 SHRIVER D F , PAPKE B L , RATNER M A , et al. Structure and ion transport in polymer-salt complexes[J]. Solid State Ionics, 1981, 5, 83- 88.
doi: 10.1016/0167-2738(81)90199-5
42 PAPKE B L , RATNER M A , SHRIVER D F . Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts[J]. Journal of the Electrochemical Society, 1982, 129 (8): 1694- 1701.
doi: 10.1149/1.2124252
43 BERTHIER C , GORECKI W , MINIER M , et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11 (1): 91- 95.
doi: 10.1016/0167-2738(83)90068-1
44 GORECKI W , JEANNIN M , BELORIZKY E , et al. Physical-properties of solid polymer electrolyte PEO(LITFSI) complexes[J]. Journal of Physics-Condensed Matter, 1995, 7 (34): 6823- 6832.
doi: 10.1088/0953-8984/7/34/007
45 KOHJIYA S , IKEDA Y . Polymer solid electrolytes from poly(oxyethylene) derivatives[J]. Materials Science Research International, 1998, 4 (2): 73- 78.
46 FAUTEUX D , PRUD'HOMME J , HARVEY P E . Electrochemical stability and ionic conductivity of some polymer-lix based electrolytes[J]. Solid State Ionics, 1988, 28/30, 923- 928.
doi: 10.1016/0167-2738(88)90305-0
47 刘玉龙, 辛明杨, 丛丽娜, 等. 聚氧乙烯基聚合物固态电池的界面研究进展[J]. 物理学报, 2020, 69 (22): 79- 98.
47 LIU Y L , XIN M Y , CONG L N , et al. Research progress on the interface of polyoxyethylene polymer solid state battery[J]. Acta Physica Sinica, 2020, 69 (22): 79- 98.
48 王冉, 梅花, 任文坛, 等. PEO类聚合物基体的改性及其高性能电解质材料研究的新进展[J]. 材料导报, 2016, 30 (11): 63- 67.
48 WANG R , MEI H , REN W T , et al. New progress of the research on the modification of PEO polymer matrix and its high-performance solid polymer electrolyte materials[J]. Materials Reports, 2016, 30 (11): 63- 67.
49 SCROSATI B , GARCHE J . Lithium batteries: status, prospects and future[J]. Journal of Power Sources, 2010, 195 (9): 2419- 2430.
doi: 10.1016/j.jpowsour.2009.11.048
50 WANG W , YI E , FICI A J , et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121 (5): 2563- 2573.
doi: 10.1021/acs.jpcc.6b11136
51 吴浩, 邱锦, 陈卫星, 等. 水铝英石/PEO/LiClO4复合固态聚合物电解质中组分相互作用对PEO结晶的影响[J]. 材料工程, 2021, 49 (1): 35- 43.
51 WU H , QIU J , CHEN W X , et al. Effect of interaction in allophane/PEO/LiClO4 composite solid polymer electrolyte on crystallization of PEO[J]. Journal of Materials Engineering, 2021, 49 (1): 35- 43.
52 VERMA M L , SAHU H D . Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes[J]. Ionics, 2017, 23 (9): 2339- 2350.
doi: 10.1007/s11581-017-2063-4
53 WU X , CHEN K , YAO Z , et al. Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries[J]. Journal of Power Sources, 2021, 501, 229946.
doi: 10.1016/j.jpowsour.2021.229946
54 YANG T , ZHENG J , CHENG Q , et al. Composite polymer electrolytes with Li7La3Zr2O12garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9 (26): 21773- 21780.
55 WANG X , ZHAI H , QIE B , et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60, 205- 212.
doi: 10.1016/j.nanoen.2019.03.051
56 THIAM A , ANTONELLI C , IOJOIU C , et al. Optimizing ionic conduction of poly(oxyethylene) electrolytes through controlling the cross-link density[J]. Electrochimica Acta, 2017, 240, 307- 315.
doi: 10.1016/j.electacta.2017.04.046
57 LE NEST J F , GANDINI A , CHERADAME H , et al. Influence of lithium perchlorate on the properties of polyether networks: specific volume and glass transition temperature[J]. Macromolecules, 1988, 21 (4): 1117- 1120.
doi: 10.1021/ma00182a044
58 WANG X , SUN J , FENG C , et al. Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2021, 55, 228- 235.
doi: 10.1016/j.jechem.2020.06.070
59 孙娉, 廖友好, 李伟善. 锂离子电池用聚丙烯腈基凝胶聚合物电解质研究进展[J]. 电池工业, 2014, 19 (2): 97- 102.
doi: 10.3969/j.issn.1008-7923.2014.02.010
59 SUN P , LIAO Y H , LI W S . Research progress on polyacrylonitrile based gel polymer electrolytes for Li-ion batteries[J]. Chinese Battery Industry, 2014, 19 (2): 97- 102.
doi: 10.3969/j.issn.1008-7923.2014.02.010
60 LI C , WANG J , CHANG Z , et al. Preparation and characterization of PAN-LATP composite solid-state electrolyte[J]. Scientia Sinica Chimica, 2018, 48 (8): 964- 971.
doi: 10.1360/N032018-00062
61 HU S , DU L , ZHANG G , et al. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13 (11): 13183- 13190.
62 万锕俊, 唐志廉. 聚丙烯腈的增塑研究[J]. 高分子材料科学与工程, 2002, (3): 1- 3.
doi: 10.3321/j.issn:1000-7555.2002.03.001
62 WAN A J , TANG Z L . The progress in the plastification of polyacrylonitrile[J]. Polymer Materials Science & Engineering, 2002, (3): 1- 3.
doi: 10.3321/j.issn:1000-7555.2002.03.001
63 HUANG B Y , WANG Z X , LI G B , et al. Lithium ion conduction in polymer electrolytes based on PAN[J]. Solid State Ionics, 1996, 85 (1/4): 79- 84.
64 马攀龙, 张忠厚, 韩琳, 等. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33 (增刊1): 457- 461.
64 MA P L , ZHANG Z H , HAN L , et al. Study on polyacrylonitrile gel polymer electrolyte films reinforced by crosslinking agent and non-woven fabrics[J]. Materials Reports, 2019, 33 (Suppl 1): 457- 461.
65 CHOWDHURY F L , KHALIL I , KHANDAKER M U , et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)-based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells[J]. Ionics, 2020, 26 (9): 4737- 4746.
doi: 10.1007/s11581-020-03612-7
66 CHOWDHURY F I , BURAIDAH M H , AROF A K , et al. Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance[J]. Sol Energy, 2020, 196, 379- 388.
doi: 10.1016/j.solener.2019.12.033
67 JYOTHI N K , VENKATARATNAM K K , MURTY P N , et al. Preparation and characterization of PAN-KI complexed gel polymer electrolytes for solid-state battery applications[J]. Bulletin of Materials Science, 2016, 39 (4): 1047- 1055.
doi: 10.1007/s12034-016-1241-8
68 ZHANG X , LI T , LI P , et al. Performance of flexible supercapacitor based on TEABF4/PAN-b-PEG-b-PAN[J]. New Chemical Materials, 2019, 47 (4): 89- 92.
69 邓袁元. 锂离子电池用PAN/TPU/PS凝胶聚合物电解质的制备与研究[D]. 湘潭: 湘潭大学, 2017.
69 DENG Y Y. Preparation and study of PAN/TPU/PS gel polymer electrolytes for lithium ion battery[D]. Xiangtan: Xiangtan University, 2017.
70 SAIDI N M , GOH Z L , ARIF H M , et al. Consolidation of ion promoters into quasi solid-state (QSS) polymer electrolytes for dye-sensitized solar cells (DSSCs)[J]. Solid State Ionics, 2021, 363, 115592.
doi: 10.1016/j.ssi.2021.115592
71 VERDIER N , LEPAGE D , ZIDANI R , et al. Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-ion battery[J]. ACS Applied Energy Materials, 2019, 3 (1): 1099- 1110.
72 唐致远, 王占良. 聚丙烯腈基聚合物电解质[J]. 化学通报, 2002, (6): 379- 384.
doi: 10.3969/j.issn.0441-3776.2002.06.003
72 TANG Z Y , WANG Z L . PAN-based polymer electrolyte[J]. Chemistry Bulletin, 2002, (6): 379- 384.
doi: 10.3969/j.issn.0441-3776.2002.06.003
73 寻之玉, 侯璞, 刘旸, 等. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47 (11): 71- 83.
doi: 10.11868/j.issn.1001-4381.2019.000346
73 XUN Z Y , HOU P , LIU Y , et al. Research progress of polymer electrolytes in supercapacitors[J]. Journal of Materials Engineering, 2019, 47 (11): 71- 83.
doi: 10.11868/j.issn.1001-4381.2019.000346
74 LI D , CHEN L , WANG T S , et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (8): 7069- 7078.
75 XU H , ZHANG X , JIANG J , et al. Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery[J]. Solid State Ionics, 2020, 347, 115227.
doi: 10.1016/j.ssi.2020.115227
76 刘汉奎, 刘芹, 贾维尚, 等. PEO-PAN-PEO三明治结构新型固态聚合物电解质的研究[J]. 四川大学学报(自然科学版), 2018, 55 (4): 833- 837.
doi: 10.3969/j.issn.0490-6756.2018.04.028
76 LIU H , LIU Q , JIA W , et al. A novel all-solid-state polymer electrolyte based on PEO-PAN-PEO sandwich structure[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55 (4): 833- 837.
doi: 10.3969/j.issn.0490-6756.2018.04.028
77 PAN Q , BARBASH D , SMITH D M , et al. Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries[J]. Advanced Energy Materials, 2017, 7 (22): 1701231.
doi: 10.1002/aenm.201701231
78 WANG X , HAO X , XIA Y , et al. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries[J]. Journal of Membrane Science, 2019, 582, 37- 47.
doi: 10.1016/j.memsci.2019.03.048
79 LIU B , HUANG Y , CAO H , et al. A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method[J]. Journal of Solid State Electrochemistry, 2018, 22 (6): 1771- 1783.
doi: 10.1007/s10008-017-3877-8
80 YANG C C , LIN S J , WU G M . Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes[J]. Materials Chemistry and Physics, 2005, 92 (1): 251- 255.
doi: 10.1016/j.matchemphys.2005.01.022
81 YANG C C , LEE Y J , YANG J M . Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes[J]. Journal of Power Sources, 2009, 188 (1): 30- 37.
doi: 10.1016/j.jpowsour.2008.11.098
82 张正富, 马明煜, 伍美珍. PVA-AA-KOH-H2O碱性聚合物电解质的制备与性能研究[J]. 功能材料, 2010, 41 (增刊2): 281- 284.
82 ZHANG Z F , MA M Y , WU M Z . Preparation and properties of PVA-AA-KOH-H2O alkaline polymer electrolytes[J]. Journal of Functional Materials, 2010, 41 (Suppl 2): 281- 284.
83 VASSAL N , SALMON E , FAUVARQUE J F . Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO)[J]. Electrochimica Acta, 2000, 45 (8/9): 1527- 1532.
84 傅婧, 乔锦丽, 马建新. 用于燃料电池的季铵基团的PVA/PAADDA碱性聚合物电解质膜的制备及稳定性[J]. 高等学校化学学报, 2011, 32 (7): 1598- 1604.
84 FU J , QIAO J L , MA J X . Preparation and stability of quaternary ammonium based solid alkaline electrolyte membrane for fuel cells[J]. Chemical Journal of Chinese Universities, 2011, 32 (7): 1598- 1604.
85 YANG C C . Study of alkaline nanocomposite polymer electrolytes based on PVA-ZrO2-KOH[J]. Materials Science & Engineering B, 2006, 131 (1/3): 256- 262.
86 WU Q , ZHANG J , SANG S . Preparation of alkaline solid polymer electrolyte based on PVA-TiO2-KOH-H2O and its performance in Zn-Ni battery[J]. Journal of the Physics & Chemistry of Solids, 2008, 69 (11): 2691- 2695.
87 GAO H , LI J , LIAN K . Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors[J]. RSC Advances, 2014, 4 (41): 21332- 21339.
doi: 10.1039/C4RA01014K
88 MOHAMAD A A , MOHAMED N S , ALIAS Y , et al. Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries[J]. Journal of Alloys and Compounds, 2002, 337 (1): 208- 213.
89 MOHAMAD A A , MOHAMED N S , YAHYA M Z A , et al. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells[J]. Solid State Ionics, 2003, 156 (1/2): 171- 177.
90 TRAN T N T , CHUNG H J , IVEY D G . A study of alkaline gel polymer electrolytes for rechargeable zinc-air batteries[J]. Electrochimica Acta, 2019, 327, 135021.
doi: 10.1016/j.electacta.2019.135021
91 LI J , LIAN K . A comparative study of tetraethylammonium hydroxide polymer electrolytes for solid electrochemical capacitors[J]. Polymer, 2016, 99, 140- 146.
doi: 10.1016/j.polymer.2016.07.001
92 LI M , LIU B , FAN X , et al. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (32): 28909- 28917.
93 YOU X , QIAO C , PENG D , et al. Preparation of alkaline polyelectrolyte membrane based on quaternary ammonium salt-modified cellulose and its application in Zn-air flexible battery[J]. Polymers, 2020, 13 (1): 9.
doi: 10.3390/polym13010009
94 许玉玉, 杜海燕, 武泽民, 等. 凝胶聚合物电解质组装聚3, 4-乙烯二氧噻吩固态超级电容器[J]. 高分子材料科学与工程, 2020, 36 (6): 48- 54.
94 XU Y Y , DU H Y , WU Z M , et al. Poly 3, 4-ethylenedioxythiophene solid state supercapacitor assembled with gel polymer electrolyte[J]. Polymer Materials Science & Engineering, 2020, 36 (6): 48- 54.
95 WANG D C , YU H Y , QI D , et al. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors[J]. ACS Applied Materials & Interfaces, 2019, 11 (27): 24435- 24446.
96 ALJAFARI B , ALAMRO T , RAM M K , et al. Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices[J]. Journal of Solid State Electrochemistry, 2019, 23 (1): 125- 133.
doi: 10.1007/s10008-018-4120-y
97 XIE Y , WANG J . Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte[J]. Journal of Sol-Gel Science and Technology, 2018, 86 (3): 760- 772.
doi: 10.1007/s10971-018-4678-y
98 WANG G , LU X , LING Y , et al. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors[J]. ACS Nano, 2012, 6 (11): 10296- 10302.
doi: 10.1021/nn304178b
99 巫梦丹, 周胜林, 叶安娜, 等. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器[J]. 物理学报, 2019, 68 (10): 280- 289.
99 WU M D , ZHOU S L , YE A N , et al. High voltage flexible solid state supercapacitor based on neutral hydrogel / oriented carbon nanotube array[J]. Acta Physica Sinica, 2019, 68 (10): 280- 289.
100 ASIM S , JAVED M S , KHAN J , et al. Energy storage performance of binder-free ruthenium-oxide nano-needles based free-standing electrode in neutral pH electrolytes[J]. Electrochimica Acta, 2021, 378, 138139.
doi: 10.1016/j.electacta.2021.138139
101 AZIZ S B , HAMSAN M H , ABDULLAH R , et al. Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes[J]. Ionics, 2020, 26 (4): 1829- 1840.
doi: 10.1007/s11581-020-03498-5
102 AZIZ S B , HAMSAN M H , BRZA M A , et al. Effect of glycerol on EDLC characteristics of chitosan: methylcellulose polymer blend electrolytes[J]. Journal of Materials Research and Technology, 2020, 9 (4): 8355- 8366.
doi: 10.1016/j.jmrt.2020.05.114
103 LI Y , LIU M , DUAN S , et al. A high-voltage hybrid solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries[J]. ACS Applied Energy Materials, 2021, 4 (3): 2318- 2326.
doi: 10.1021/acsaem.0c02846
104 ZHANG J J , ZANG X , WEN H J , et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5 (10): 4940- 4948.
doi: 10.1039/C6TA10066J
105 MA L T , CHEN S M , WANG D H , et al. Super-stretchable zinc air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019, 9 (12): 1803046.
doi: 10.1002/aenm.201803046
106 LIU T , REN X , ZHANG J , et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors[J]. Journal of Power Sources, 2020, 449, 227532.
doi: 10.1016/j.jpowsour.2019.227532
107 MO F , LIANG G , WANG D , et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices[J]. EcoMat, 2019, 1 (1): 12008.
108 WANG Y , CHEN F , LIU Z , et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie International Edition, 2019, 58 (44): 15707- 15711.
doi: 10.1002/anie.201908985
109 LOU D , WANG C , HE Z , et al. Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water[J]. Chemical Communications, 2019, 55 (58): 8422- 8425.
doi: 10.1039/C9CC04239C
110 LI X , LOU D , WANG H , et al. Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property[J]. Advanced Functional Materials, 2020, 30 (52): 2007291.
doi: 10.1002/adfm.202007291
111 QUARTARONE E , MUSTARELLI P . Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40 (5): 2525- 2540.
doi: 10.1039/c0cs00081g
112 任超时. 新型聚硅氧烷接枝聚氧化乙烯类固体电解质的制备与电化学性能[D]. 杭州: 浙江大学, 2017.
112 REN C S. Synthesis and electrochemical performance of solid state electrolytes based on polysiloxane grafted polyethylene oxide[D]. Hangzhou: Zhejiang University, 2017.
113 王旭尧, 刘姝伶, 闫晓丹, 等. 单离子导体聚合物电解质研究进展[J]. 新能源进展, 2020, 8 (5): 402- 412.
doi: 10.3969/j.issn.2095-560X.2020.05.009
113 WANG X Y , LIU S L , YAN X D , et al. Progress on single-ion conducting polymer electrolytes[J]. Advances in New and Renewable Energy, 2020, 8 (5): 402- 412.
doi: 10.3969/j.issn.2095-560X.2020.05.009
114 THOMAS K E , SLOOP S E , KERR J B , et al. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers[J]. Journal of Power Sources, 2000, 89 (2): 132- 138.
doi: 10.1016/S0378-7753(00)00420-1
115 DOYLE M , NEWMAN J . The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochimica Acta, 1995, 40 (13/14): 2191- 2196.
116 DOYLE M , FULLER T F , NEWMAN J . The importance of the lithium ion transference number in lithium/polymer cells[J]. Electrochimica Acta, 1994, 39 (13): 2073- 2081.
doi: 10.1016/0013-4686(94)85091-7
117 CHAZALVIEL J N . Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42 (12): 7355- 7367.
doi: 10.1103/PhysRevA.42.7355
118 ROLLAND J , POGGI E , VLAD A , et al. Single-ion diblock copolymers for solid-state polymer electrolytes[J]. Polymer, 2015, 68, 344- 352.
doi: 10.1016/j.polymer.2015.04.056
119 DING Y , SHEN X , ZENG J , et al. Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene fluoride)[J]. Solid State Ionics, 2018, 323, 16- 24.
doi: 10.1016/j.ssi.2018.05.009
120 张恒, 郑丽萍, 聂进, 等. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26 (6): 1005- 1020.
120 ZHANG H , ZHENG L P , NIE J , et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry, 2014, 26 (6): 1005- 1020.
121 BANNISTER D J , DAVIES G R , WARD I M , et al. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers[J]. Polymer, 1984, 25 (9): 1291- 1296.
doi: 10.1016/0032-3861(84)90378-1
122 OLMEDO-MARTíNEZ J L , PORCARELLI L , ALEGRíA Á , et al. High lithium conductivity of miscible poly(ethylene oxide)/methacrylic sulfonamide anionic polyelectrolyte polymer blends[J]. Macromolecules, 2020, 53 (11): 4442- 4453.
doi: 10.1021/acs.macromol.0c00703
123 MERRILL L C , CHEN X C , ZHANG Y , et al. Polymer-ceramic composite electrolytes for lithium batteries: a comparison between the single-ion-conducting polymer matrix and its counterpart[J]. ACS Applied Energy Materials, 2020, 3 (9): 8871- 8881.
doi: 10.1021/acsaem.0c01358
124 CHEN Y , LI C , YE D , et al. Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries[J]. Journal of Membrane Science, 2021, 620, 118926.
doi: 10.1016/j.memsci.2020.118926
125 ZHENG J , SCHKERYANTZ L , GOURDIN G , et al. Single potassium-ion conducting polymer electrolytes: preparation, ionic conductivities, and electrochemical stability[J]. ACS Applied Energy Materials, 2021, 4 (4): 4156- 4164.
doi: 10.1021/acsaem.1c00483
126 ZHAO H , JIA Z , YUAN W , et al. Fumed silica-based single-ion nanocomposite electrolyte for lithium batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19335- 19341.
127 ROHAN R , PAREEK K , CHEN Z , et al. A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (40): 20267- 20276.
doi: 10.1039/C5TA02628H
128 MEHTA M A , FUJINAMI T . Novel inorganic-organic polymer electrolytes-preparation and properties[J]. Solid State Ionics, 1998, 113, 187- 192.
129 DAI K , MA C , FENG Y , et al. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7 (31): 18547- 18557.
doi: 10.1039/C9TA05938E
130 PARK S S , TULCHINSKY Y , DINCA M . Single-ion Li+, Na+, and Mg2+solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139 (38): 13260- 13263.
doi: 10.1021/jacs.7b06197
131 BLAZEJCZYK A , SZCZUPAK M , WIECZOREK W , et al. Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes[J]. Chemistry of Materials, 2005, 17 (6): 1535- 1547.
doi: 10.1021/cm048679j
132 KALITA M , BUKAT M , CIOSEK M , et al. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes[J]. Electrochimica Acta, 2005, 50 (19): 3942- 3948.
doi: 10.1016/j.electacta.2005.02.067
133 KAYNAK M , YUSUF A , AYDIN H , et al. Enhanced ionic conductivity in borate ester plasticized polyacrylonitrile electrolytes for lithium battery application[J]. Electrochimica Acta, 2015, 164, 108- 113.
doi: 10.1016/j.electacta.2015.02.214
134 LIU T , CHANG Z , YIN Y , et al. The PVDF-HFP gel polymer electrolyte for Li-O2 battery[J]. Solid State Ionics, 2018, 318, 88- 94.
doi: 10.1016/j.ssi.2017.08.001
135 ZHANG X , LIU T , ZHANG S F , et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139 (39): 1379- 13785.
136 BAG S , ZHOU C , KIM P J , et al. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Materials, 2020, 24, 198- 207.
doi: 10.1016/j.ensm.2019.08.019
137 SUN Y , ZHAN X , HU J , et al. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12fillers for composite polymer electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11 (13): 12467- 12475.
138 LI B , SU Q , YU L , et al. Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity[J]. Applied Surface Science, 2021, 541, 148434.
doi: 10.1016/j.apsusc.2020.148434
139 王园园, 乔庆东. 聚偏氟乙烯-六氟丙烯基复合聚合物电解质的化学改性研究进展[J]. 化工新型材料, 2018, 46 (2): 17- 21.
139 WAG Y Y , QIAO Q D . Research progress on chemical modification of PVDF-HFP based composite polymer electrolyte[J]. New Chemical Materials, 2018, 46 (2): 17- 21.
140 陈淑花, 刘学武, 冯铁柱, 等. 不同温度对PVDF-HFP基多孔聚合物电解质膜孔结构及性能的影响[J]. 储能科学与技术, 2017, 6 (3): 590- 595.
140 CHEN S H , LIU X W , FENG T Z , et al. Effects of temperature on structure and properties of PVDF-HFP-based porous polymer electrolyte membranes prepared by non-solvent evaporate method[J]. Energy Storage Science and Technology, 2017, 6 (3): 590- 595.
141 LUO K , SHAO D , YANG L , et al. Semi-interpenetrating gel polymer electrolyte based on PVDF-HFP for lithium ion batteries[J]. Journal of Applied Polymer Science, 2021, 138 (11): 49993.
doi: 10.1002/app.49993
142 XIAO Q , CHEN Y , LI Q , et al. Preparation and performance of poly(vinylidene fluoride)-based crosslinked gel polymer electrolytes[J]. Polymer Materials Science & Engineering, 2020, 36 (8): 1- 10.
143 AHMAD A L , FAROOQUI U R , HAMID N A . Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries[J]. RSC Advances, 2018, 8 (45): 25725- 25733.
doi: 10.1039/C8RA03918F
144 WANG X , LIU Z , TANG Y , et al. PVDF-HFP/PMMA/TPU-based gel polymer electrolytes composed of conductive Na3Zr2Si2PO12 filler for application in sodium ions batteries[J]. Solid State Ionics, 2021, 359, 115532.
doi: 10.1016/j.ssi.2020.115532
145 KHAN S , FANG C Y , MA Y C , et al. High-performance PVDF-HFP based gel polymer electrolyte modified by core-shell SiO2-PMMA for electrochromic devices[J]. Journal of the Electrochemical Society, 2021, 168 (2): 0225047.
146 PAN Z , YANG J , ZHANG Q , et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9 (9): 1802753.
doi: 10.1002/aenm.201802753
[1] 马海霞, 王太和, 赵玉洁, 王旭, 李嘉辰. MoS2/Ru异质结构的制备及其电催化析氢反应性能[J]. 材料工程, 2022, 50(4): 44-52.
[2] 李鑫, 王秋芬, 缪娟, 田会芳, 张成立, 张延磊, 张志林. 莴笋叶制备多孔碳材料的优化设计及储锂性能[J]. 材料工程, 2022, 50(4): 53-61.
[3] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[4] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[5] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[6] 苏传出, 陈希章, SergeyKonovalov, 卢淑媛, 闻明, 王艳虎. 激光直接沉积CoCrFeNiMn高熵合金: 气孔-组织结构-拉伸性能之间的关系[J]. 材料工程, 2022, 50(3): 43-49.
[7] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[8] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[9] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[10] 万长鑫, 詹胜鹏, 陈辉, 李银华, 贾丹, 李健, 段海涛. 功能性填料改性聚合物材料的摩擦学研究进展[J]. 材料工程, 2022, 50(2): 73-83.
[11] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[12] 马国庆, 陈亮, 崔正明, 李维, 官建国. 溶解乳化法制备SBS包覆FeSiAl片状吸收剂的微波电磁性能[J]. 材料工程, 2022, 50(2): 111-117.
[13] 白龙腾, 成来飞, 杨晓辉, 曹晶, 王毅. 双组元液体动力环境下3D C/SiC复合材料喷管烧蚀性能[J]. 材料工程, 2022, 50(2): 118-126.
[14] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[15] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn