Please wait a minute...
2222材料工程  2022, Vol. 50 Issue (4): 53-61    DOI: 10.11868/j.issn.1001-4381.2020.000960
  储能材料专栏 本期目录 | 过刊浏览 | 高级检索 |
李鑫, 王秋芬(), 缪娟(), 田会芳, 张成立, 张延磊, 张志林
河南理工大学 化学化工学院, 河南 焦作 454003
Lithium storage performance and optimal design of porous carbon materials with lettuce leaves
Xin LI, Qiufen WANG(), Juan MIAO(), Huifang TIAN, Chengli ZHANG, Yanlei ZHANG, Zhilin ZHANG
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
全文: PDF(19804 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      

生物质多孔碳材料作为绿色环保的新能源材料,是近年来研究的热点。通过探讨不同工艺条件(烧结温度、活化剂以及原料与活化剂质量比)下制备的莴笋叶多孔碳材料(简写为LLs-温度-比例-活化剂)的储锂性能,优化了工艺条件。结果显示,每种材料均可见两个宽且弱的XRD衍射峰,分别在2θ=22°~26°和2θ≈43°,对应晶面(002)和(101),表明材料为有一定石墨化程度的无定形碳。另外,LLs-800-4R-K的首次放电比容量为674.5 mAh/g,循环200周次后的比容量为209.6 mAh/g,能量密度为146.8 Wh/kg,具有良好的循环性能和较高的比容量。从而得到最优工艺条件:烧结温度800 ℃、活化剂KOH、原料与活化剂质量比1:4。

E-mail Alert
关键词 多孔碳莴笋叶工艺条件优化设计储锂性能    

As a new energy material of environmental protection, biomass porous carbon material has been a research hotspot in recent years. In this paper, the porous carbon materials from lettuce leaves (LLs-temperature-proportional-activator) were prepared under different conditions, such as sintering temperature, the different activator, and the mass ratio of raw material and the activator, and the technological conditions were optimized through the discussion on their lithium storage performances. The results show that there are two broad and weak XRD peaks at 2θ=22°-26° and 2θ≈43° in each material, corresponding to the lattice plane (002) and (101), which indicates that the material is an amorphous carbon material with a certain degree of graphitization. In addition, the first discharge capacity of LLs-800-4R-K can reach 674.5 mAh/g. After 200 cycles, its discharge specific capacity can be maintained at 209.6 mAh /g, and the energy density is 146.8 Wh/kg. It illustrates that LLs-800-4R-K has good cycle performance and specific capacity. Thus, the optimum process conditions are as follows. The sintering temperature is at 800 ℃, KOH is used as activator, the mass ratio of raw material and the activator is 1:4.

Key wordsporous carbon    lettuce leaf    process condition    optimization design    lithium storage performance
收稿日期: 2020-10-15      出版日期: 2022-04-18
中图分类号:  TM911.15  
通讯作者: 王秋芬,缪娟     E-mail:;
作者简介: 缪娟(1963-),女,教授,博士, 主要从事新能源材料及器件等方面的研究工作,联系地址:河南省焦作市山阳区世纪大道2001号河南理工大学(454003),
李鑫, 王秋芬, 缪娟, 田会芳, 张成立, 张延磊, 张志林. 莴笋叶制备多孔碳材料的优化设计及储锂性能[J]. 材料工程, 2022, 50(4): 53-61.
Xin LI, Qiufen WANG, Juan MIAO, Huifang TIAN, Chengli ZHANG, Yanlei ZHANG, Zhilin ZHANG. Lithium storage performance and optimal design of porous carbon materials with lettuce leaves. Journal of Materials Engineering, 2022, 50(4): 53-61.
链接本文:      或
Fig.1  以莴笋叶为碳源制备多孔碳材料的工艺流程示意图
Fig.2  不同工艺条件的莴笋叶的XRD图
Fig.3  LLs-800-4R-KOH和LLs-800-4R-CaCl2的XPS图
Fig.4  样品的SEM图
Fig.5  样品的TEM图
Fig.6  不同工艺条件下莴笋叶材料的BET测试
Fig.7  不同工艺条件下莴笋叶的电化学性能
Fig.8  不同工艺条件下莴笋叶的电化学阻抗谱
Fig.9  电极在不同电荷状态下ωZ′的关系
Fig.10  200次循环后的SEM图
Fig.11  莴笋叶材料和梧桐树叶的电化学性能
1 CHAI Y , DU Y , LI L , et al. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries[J]. Nanotechnology, 2020, 31 (21): 215402.
doi: 10.1088/1361-6528/ab7049
2 OH S H , PARK S M , KANG D W , et al. Fibrous network of highly integrated carbon nanotubes/MoO3composite bundles anchored with MoO3 nanoplates for superior lithium ion battery anodes[J]. Journal of Industrial and Engineering Chemistry, 2020, 83, 438- 448.
doi: 10.1016/j.jiec.2019.12.017
3 LI Y , ZHAO Y , MA C L , et al. Highly monodispersed graphene/SnO2 hybrid nano sheets as bifunctional anode materials of Li-ion and Na-ion batteries[J]. Journal of Alloys and Compounds, 2020, 821, 153506.
doi: 10.1016/j.jallcom.2019.153506
4 LV S , LI C , MI J , et al. A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4 Na-modification[J]. Applied Surface Science, 2020, 510, 145425.
doi: 10.1016/j.apsusc.2020.145425
5 NIE W , LIU X , XIAO Q , et al. Hierarchical porous carbon anode materials derived from rice husks with high capacity and long cycling stability for sodium-ion batteries[J]. Chem Electro Chem, 2020, 7 (3): 631- 641.
6 MARY A J C , NANDHINI C , BOSE A C . Hierarchical porous structured N-doped activated carbon derived from Helianthus Annuus seed as a cathode material for hybrid supercapacitor device[J]. Materials Letters, 2019, 256, 126617.
doi: 10.1016/j.matlet.2019.126617
7 CAO L , WANG Y , HU H , et al. A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries[J]. Journal of Materials Science, 2019, 30 (24): 21323- 21331.
8 LI R , HUANG J , REN J , et al. A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 818, 152849.
doi: 10.1016/j.jallcom.2019.152849
9 QI X , ZHANG H , LI C , et al. A simple and recyclable molten-salt route to prepare superthin biocarbon sheets based on the high water-absorbent agaric for efficient lithium storage[J]. Carbon, 2020, 157, 286- 294.
doi: 10.1016/j.carbon.2019.10.050
10 ZHAO G , CHENG Y , SUN P , et al. Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors[J]. Electrochimica Acta, 2020, 331, 135262.
doi: 10.1016/j.electacta.2019.135262
11 RASHEED T , NAVEED A , NABEEL F , et al. Bio-mass derived ultrahigh-energy storage porous graphitic carbon for advanced anode material in lithium battery[J]. Materials Chemistry and Physics, 2020, 242, 122543.
doi: 10.1016/j.matchemphys.2019.122543
12 XIAO Q , LI G , LI M , et al. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 44, 61- 67.
doi: 10.1016/j.jechem.2019.09.004
13 FENG Y , TAO L , HE Y , et al. Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (47): 26954- 26965.
doi: 10.1039/C9TA09124F
14 DUTTA D P . Composites of Sb2O4 and biomass-derived mesoporous disordered carbon as versatile anodes for sodium-ion batteries[J]. Chemistry Select, 2020, 5 (6): 1846- 1857.
15 YU Z E , LYU Y , WANG Y , et al. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism[J]. Chem Commun, 2020, 56 (5): 778- 781.
doi: 10.1039/C9CC08221B
16 ZHAO W , WEN J , ZHAO Y , et al. Hierarchically porous carbon derived from biomass reed flowers as highly stable Li-ion battery anode[J]. Nanomaterials, 2020, 10 (2): 346.
doi: 10.3390/nano10020346
17 LI T , LIU Z , GU Y , et al. Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency[J]. Journal of Alloys and Compounds, 2020, 817, 152703.
doi: 10.1016/j.jallcom.2019.152703
18 CHEN K , LI G , WANG Y , et al. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries[J]. Green Energy & Environment, 2019, 5 (1): 50- 58.
19 WANG Z , ZHANG X , LIU X , et al. High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries[J]. J Colloid Interface Sci, 2020, 569, 22- 33.
doi: 10.1016/j.jcis.2020.02.062
20 DONG Y , JIANG X , MO J , et al. Hollow CuO nanoparticles in carbon microspheres prepared from cellulose-cuprammonium solution as anode materials for Li-ion batteries[J]. Chemical Engineering Journal, 2020, 381, 122614.
doi: 10.1016/j.cej.2019.122614
21 LUO J , ZHANG H , ZHANG Z , et al. In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage[J]. Carbon, 2019, 155, 1- 8.
doi: 10.1016/j.carbon.2019.08.044
22 NANAJI K , RAO T N , VARADARAJU U V , et al. Jute sticks derived novel graphitic porous carbon nanosheets as Li-ion battery anode material with superior electrochemical properties[J]. International Journal of Energy Research, 2019, 44 (3): 2289- 2297.
23 WU X , JIANG J , WANG C , et al. Lignin-derived electrochemical energy materials and systems[J]. Biofuels Bioproducts & Biore fining-Biofpr, 2020, 14 (3): 650- 672.
24 JENSEN A C S , OLSSON E , AU H , et al. Local mobility in electrochemically inactive sodium in hard carbon anodes after the first cycle[J]. Journal of Materials Chemistry A, 2020, 8 (2): 743- 749.
doi: 10.1039/C9TA10113F
25 YANG H , SUN X , ZHU H , et al. Nano-porous carbon materials derived from different biomasses for high performance supercapacitors[J]. Ceramics International, 2020, 46 (5): 5811- 5820.
doi: 10.1016/j.ceramint.2019.11.031
26 YAN Z , YANG Q , WANG Q , et al. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries[J]. Chinese Chemical Letters, 2020, 31 (2): 583- 588.
doi: 10.1016/j.cclet.2019.11.002
27 CHEN C , HUANG Y , ZHU Y , et al. Nonignorable Influence of oxygen in hard carbon for sodium ion storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (3): 1497- 1506.
28 ZHANG X , HUANG Q , ZHANG M , et al. Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 822, 153718.
doi: 10.1016/j.jallcom.2020.153718
29 GOMEZ-MARTIN A , MARTINEZ-FERNANDEZ J , RUTTERT M , et al. Porous graphene-like carbon from fast catalytic decomposition of biomass for energy storage applications[J]. ACS Omega, 2019, 4 (25): 21446- 21458.
doi: 10.1021/acsomega.9b03142
30 ZHU Z , ZUO H , LI S , et al. Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries[J]. Ionics, 2020, 26 (7): 3351- 3358.
doi: 10.1007/s11581-020-03464-1
31 DING H , WANG G , QI Y , et al. Rambutan-inspired yolk-shell silica@carbon frameworks from biomass for long-life anode materials[J]. Chemistry Select, 2019, 4 (48): 14075- 14081.
32 LI Q , HUANG J , CAO L , et al. Revealing the sodium storage of surface C=O structure in high performance Na-ion battery[J]. Journal of Electroanalytical Chemistry, 2019, 854, 113554.
doi: 10.1016/j.jelechem.2019.113554
33 ROMERO-CANO L A , GARCIA-ROSERO H , CARRASCO-MARIN F , et al. Surface functionalization to abate the irreversible capacity of hard carbons derived from grapefruit peels for sodium-ion batteries[J]. Electrochimica Acta, 2019, 326, 134973.
doi: 10.1016/j.electacta.2019.134973
34 LIU Y , JIANG W , LIU M , et al. Ultrafine Co1-xS attached to porous interconnected carbon skeleton for sodium-ion batteries[J]. Langmuir, 2019, 35 (50): 16487- 16495.
doi: 10.1021/acs.langmuir.9b03051
35 ZHAO G , YU D , ZHANG H , et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67, 104219.
doi: 10.1016/j.nanoen.2019.104219
36 LU X , XIANG K , WANG Y , et al. Selective preparation of graphene- and rope-like nano carbons from camellia wastes as high performance electrode materials for energy storage[J]. Journal of Alloys and Compounds, 2019, 811, 151616.
doi: 10.1016/j.jallcom.2019.07.328
[1] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[2] 唐闻远, 许英杰, 孙勇毅, 张卫红, 惠新育. 基于温度曲线优化的复合材料热压罐固化时间与固化质量协同控制[J]. 材料工程, 2021, 49(9): 142-150.
[3] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[4] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[5] 罗楚养, 熊峻江, 益小苏, 张子龙, 刘刚. 复合材料蒙皮-加筋大开口结构优化设计[J]. 材料工程, 2011, 0(4): 9-13.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持