Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 74-84    DOI: 10.11868/j.issn.1001-4381.2020.000914
  综述 本期目录 | 过刊浏览 | 高级检索 |
介电型石墨烯吸波复合材料研究进展
杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程()
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Research progress in dielectric graphene microwave absorbing composites
Zongbo DU, Shuangqiang SHI, Yubin CHEN, Hairong CHU, Cheng YANG()
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4290 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

石墨烯因其独特的介电特性、高比表面积、低密度等性质, 被认为是新一代吸波材料的有力候选。然而, 单一组分的石墨烯吸波性能不佳, 因此近年来石墨烯基吸波复合材料成为研究热点。本文介绍石墨烯及其复合材料的吸波机理与特性, 指出介电型石墨烯作为极具发展潜力的吸波复合材料具有轻质、高强、宽频、薄层的特点。从石墨烯基体与掺杂体两方面综述了介电型石墨烯吸波复合材料的研究进展。最后指出, 开发损耗能力强的新型介电掺杂体、构筑多组分吸波复合材料体系、建立通用的设计方法以及探索大批量的制备方法是未来的研究方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜宗波
时双强
陈宇滨
褚海荣
杨程
关键词 石墨烯吸波材料复合材料介电损耗掺杂    
Abstract

Graphene is widely considered a promising candidate for microwave absorbing materials in the future due to its unique dielectric properties, high specific surface area, low density and other outstanding properties. However, the single component graphene has poor microwave absorbing properties, so graphene-based microwave absorbing composites have become a research hotspot in recent years. In this paper, microwave absorbing mechanism and characteristics of graphene and its composites were introduced. Accordingly, it indicates that dielectric graphene microwave absorbing composites have the potential to become lightweight, high-intensity, broadband, and thin-layer microwave absorbing materials.The research progress in dielectric graphene microwave absorbing composites was reviewed from two aspects of graphene matrix and dopant.Finally, it was pointed out that developing new dielectric dopants with strong loss ability, constructing microwave absorbing composites with multiple components, establishing common design methods, as well as exploring large scale preparation methods would become the research trends in the future.

Key wordsgraphene    microwave absorbing material    composite    dielectric loss    doping
收稿日期: 2020-09-29      出版日期: 2022-04-18
中图分类号:  TB34  
基金资助:国防科技工业局稳定支持科研项目(KZ0C190316)
通讯作者: 杨程     E-mail: chengyang_78@126.com
作者简介: 杨程(1978—),女,研究员,博士,研究方向为石墨烯的制备及应用,联系地址:北京市81信箱72分箱(100095),E-mail:chengyang_78@126.com
引用本文:   
杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
Zongbo DU, Shuangqiang SHI, Yubin CHEN, Hairong CHU, Cheng YANG. Research progress in dielectric graphene microwave absorbing composites. Journal of Materials Engineering, 2022, 50(4): 74-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000914      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/74
Fig.1  石墨烯的吸波机理[25]
(a)偶极子极化;(b)电容式结构的极化;(c)电子迁移;(d)多重散射
Fig.2  三维石墨烯的吸波机理[38]
Graphene matrix Dopant Doping method Loading/%
(in paraffin)
Thickness/mm RLmin/dB EAB/GHz Ref
rGO foam SiC nanowires In-situ growth * 3 -19.6 4.2 [41]
rGO foam ZnO nanowires Hydrothermal 3.3 4.8 -27.8 4.2 [42]
3D graphene foam Si3N4 nanowires Carbothermal 50 2.36 -48.8 [43]
3D graphene foam SiC coating CVD growth 50 3.6 -51.58 10.84 [44]
3D rGO aerogel Ag(Ⅰ)-Schiff base Ball mill mixing 50 2 -63.82 6.28 [45]
Table 1  具有三维多孔结构的石墨烯基体的应用实例
Fig.3  ZnO微晶与星状ZnO共同掺杂的rGO复合材料[72]
(a)微观形貌;(b)反射率性能
Sort Graphene matrix Dopant Doping method Loading/%
(in paraffin)
Thickness/mm RLmin/dB EAB/GHz Ref
Two- rGO h-BN Heat treatment 25 1.6 -40.5 5 [50]
dimensional mechanical peeled rGO h-BN nanoparticles Ball mill mixing 40 3.29 -67.35 [51]
materials rGO MoS2 Heat treatment 10 1.9 5.72 [54]
rGO MoS2 Hydrothermal 20 1.6 -55.3 [55]
rGO Ti3C2Tx Hydrothermal 15 2.05 -31.2 5.4 [61]
GO aerogel Ti3C2Tx Electrostatic spinning 10 1.2 -49.1 2.9 [62]
Oxides rGO TiO2 nanosheets Hydrothermal 20 2.1 -27.2 5.2 [63]
2D carbon sheets TiO2 Heat treatment 45 1.7 -36 5.6 [64]
rGO SiO2/NiO Hydrothermal 25 3 -20.5 5 [65]
rGO ZnO nanocrystals In-situ growth 15 2.4 -54.2 6.7 [67]
rGO Tetrapod-like ZnO Hydrothermal 15 2.9 -59.5 6.8 [71]
rGO Starlike ZnO In-situ growth 25 4.5 -77.5 6.9 [72]
Other rGO aerogel SiC whiskers Thermal treatment * 3 -47.3 4.7 [73]
dopants rGO CuS In-situ growth 20 2.5 -54.5 4.5 [74]
rGO BaTiO3 Hydrothermal 2.5 -44.9 5.4 [75]
rGO CeO2 Hydrothermal 50 2.5 -45.94 4.5 [76]
Table 2  各介电掺杂体的应用实例
Fig.4  rGO气凝胶(rGOA)与SiC纤维/rGO气凝胶(SiCw/rGOA)吸波复合材料的电磁特性对比[80]
(a)介电常数实部ε′;(b)介电常数虚部ε″;(c)损耗角正切tanδ;(d)电导率σ;(e)电导损耗虚部贡献εc;(f)极化损耗虚部贡献εp
1 BELLIS G D , TAMBURRANO A , DINESCU A , et al. Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency[J]. Carbon, 2011, 49 (13): 4291- 4300.
doi: 10.1016/j.carbon.2011.06.008
2 DAI Y W , SUN M Q , LIU C G , et al. Electromagnetic wave absorbing characteristics of carbon black cement-based composites[J]. Cement and Concrete Composites, 2010, 32 (7): 508- 513.
doi: 10.1016/j.cemconcomp.2010.03.009
3 ZHAO T K , HOU C L , ZHANG H Y , et al. Electromagnetic wave absorbing properties of amorphous carbon nanotubes[J]. Scientific Reports, 2014, 4 (1): 1- 7.
4 YAN J , HUANG Y , WEI C , et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites: Part A, 2017, 99, 121- 128.
doi: 10.1016/j.compositesa.2017.04.016
5 ZHANG H Y , XU Y J , ZHOU J G , et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry: C, 2015, 3 (17): 4416- 4423.
doi: 10.1039/C5TC00405E
6 HAO X , YIN X W , ZHANG L T , et al. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4-PyC composite ceramics[J]. Journal of Materials Science & Technology, 2013, 29 (3): 249- 254.
7 LI Y , CAO M S . Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance[J]. Materials & Design, 2016, 110, 99- 104.
8 FENG Y B , QIU T , SHEN C Y , et al. Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials[J]. IEEE Transactions on Magnetics, 2016, 42 (3): 363- 368.
9 LIU X G , GENG D Y , MA S , et al. Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules[J]. Journal of Applied Physics, 2008, 104 (6): 064319.
doi: 10.1063/1.2982411
10 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
11 GEIM A K , NOVOSELOV K S . The rise of graphene[J]. Nature Materials, 2007, 6 (3): 183- 191.
doi: 10.1038/nmat1849
12 BALANDIN A A , GHOSH S , BAO W , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
doi: 10.1021/nl0731872
13 CHAE H K , SIBERIO-PEREZ D Y , KIM J , et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523- 527.
doi: 10.1038/nature02311
14 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438 (7065): 197.
doi: 10.1038/nature04233
15 MIKHAILOV S A , ZIEGLER K . Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects[J]. Journal of Physics: Condensed Matter, 2008, 20 (38): 384204.
doi: 10.1088/0953-8984/20/38/384204
16 ZAVYALOV D V , KRYUCHKOV S V , TYULKINA T A . Effect of rectification of current induced by an electromagnetic wave in graphene: a numerical simulation[J]. Semiconductors, 2010, 44 (7): 879- 883.
doi: 10.1134/S1063782610070092
17 SHUNIN Y N , ZHUKOVSKII Y F , GOPEYENKO V I , et al. Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures[J]. Journal of Nanophotonics, 2012, 6 (1): 1706.
18 KRYUCHKOV S V , KUKHARA E I , ZAVYALOV D V . Absorption of electromagnetic waves by graphene[J]. Physics of Wave Phenomena, 2013, 21 (3): 207- 213.
doi: 10.3103/S1541308X13030060
19 WANG C , HAN X , XU P , et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98 (7): 072906.
doi: 10.1063/1.3555436
20 MICHIELSSEN E , SAJER J M , RANJITHAN S , et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (6): 1024- 1031.
doi: 10.1109/22.238519
21 RAMO S , WHINNERY J R , VAN DUZAR T . Fields and waves in communication electronics[M]. New York: John Wiley, 1965.
22 SUN H , CHE R C , YOU X , et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials, 2014, 26 (48): 8120- 8125.
doi: 10.1002/adma.201403735
23 REN F , YU H , WANG L , et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption[J]. RSC Advances, 2014, 4 (28): 14419.
doi: 10.1039/c3ra46989a
24 廖绍彬. 铁磁学[M]. 北京: 科学出版社, 1998.
24 LIAO S B . Ferromagnetism[M]. Beijing: Science Press, 1998.
25 CAO W Q , WANG X X , YUAN J , et al. Temperature dependent microwave absorption of ultrathin graphene composites[J]. Journal of Materials Chemistry: C, 2015, 3 (38): 10017- 10022.
doi: 10.1039/C5TC02185E
26 邢丽英. 隐身材料[M]. 北京: 化学工业出版社, 2004.
26 XING L Y . Stealth materials[M]. Beijing: Chemical Industry Press, 2004.
27 YAO Y J , YANG Z H , ZHANG D W , et al. Magnetic CoFe2O4-graphene hybrids: facile synthesis, characterization, and catalytic properties[J]. Industrial & Engineering Chemistry Research, 2012, 51 (17): 6044- 6051.
28 FU M , JIAO Q Z , ZHAO Y . Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties[J]. Journal of Materials Chemistry: A, 2013, 1 (18): 5577.
doi: 10.1039/c3ta10402h
29 ZHANG G Y , SHU R W , XIE Y , et al. Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties[J]. Materials Letters, 2018, 231, 209- 212.
doi: 10.1016/j.matlet.2018.08.055
30 PAN G H , ZHU J , MA S L , et al. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene[J]. ACS Applied Materials & Interfaces, 2013, 5 (23): 12716- 12724.
31 LIU X F , CUI X R , CHEN Y X , et al. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites[J]. Carbon, 2015, 95, 870- 878.
doi: 10.1016/j.carbon.2015.09.036
32 SHEN B , ZHAI W T , TAO M M , et al. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution[J]. ACS Applied Materials & Interfaces, 2013, 5 (21): 11383- 11391.
33 LI Y J , YU M , YANG P A , et al. Enhanced microwave absorption property of Fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses[J]. Industrial & Engineering Chemistry Research, 2017, 56 (31): 8872- 8879.
34 CAO M S , WANG X X , CAO W Q , et al. Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding[J]. Journal of Material Chemistry: C, 2015, 3, 6589- 6599.
doi: 10.1039/C5TC01354B
35 XIA Y L , WANG J K , CHEN C C , et al. Controlled hydrothermal temperature provides tunable permittivity and an improved electromagnetic absorption performance of reduced graphene oxide[J]. RSC Advances, 2018, 8 (58): 33065- 33071.
doi: 10.1039/C8RA05843A
36 KUANG B Y , SONG W L , NING M Q , et al. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide[J]. Carbon, 2018, 127, 209- 217.
doi: 10.1016/j.carbon.2017.10.092
37 WU F , ZENG Q , XIA Y L , et al. The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide[J]. Applied Physics Letters, 2018, 112 (19): 192902.
doi: 10.1063/1.5028472
38 ZHANG Y , HUANG Y , ZHANG T F , et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27 (12): 2049- 2053.
doi: 10.1002/adma.201405788
39 CHEN Y W , ZHANG H Y , ZENG G X . Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure[J]. Carbon, 2018, 140, 494- 503.
doi: 10.1016/j.carbon.2018.09.014
40 XU D W , XIONG X H , CHEN P , et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 469, 428- 436.
doi: 10.1016/j.jmmm.2018.09.019
41 HAN M K , YIN X W , HOU Z X , et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces, 2017, 9 (13): 11803- 11810.
42 HE X J , LI X J , MA H , et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340, 183- 191.
doi: 10.1016/j.jpowsour.2016.11.073
43 DONG S , SONG J T , ZHANG X H , et al. Strong contribution of in situ grown nanowires to enhance the thermostabilities and microwave absorption properties of porous graphene foams under different atmospheres[J]. Journal of Materials Chemistry: C, 2017, 5 (45): 11837- 11846.
doi: 10.1039/C7TC04102K
44 YE X L , CHEN Z F , LI M , et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment[J]. ACS Sustainable Chemistry and Engineering, 2019, 7, 18395- 18404.
doi: 10.1021/acssuschemeng.9b04062
45 XU Y F , LI J H , JI H M , et al. Constructing excellent electromagnetic wave absorber with dielectric-dielectric media based on 3D reduced graphene and Ag(Ⅰ)-Schiff base coordination compounds[J]. Journal of Alloys and Compounds, 2019, 781, 560- 570.
doi: 10.1016/j.jallcom.2018.12.069
46 SONG C Q , YIN X W , HAN M K , et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties[J]. Carbon, 2017, 116, 50- 58.
doi: 10.1016/j.carbon.2017.01.077
47 WANG Y C , DONG Y , CHEN P , et al. Reduced graphene oxide foam templated by nickel foam for organ-on-a-chip engineering of cardiac constructs[J]. Materials Science and Engineering: C, 2020, 117, 111344.
doi: 10.1016/j.msec.2020.111344
48 WANG K X , SHI L R , WANG M Z , et al. Biomass hydroxyapatite-templated synthesis of 3D graphene[J]. Acta Physico-Chimica Sinica, 2019, 35, 1112- 1118.
doi: 10.3866/PKU.WHXB201805032
49 JIANG X F , LI R Q , HU M , et al. Zinc-tiered synthesis of 3D graphene for monolithic electrodes[J]. Advanced Materials, 2019, 31, 1901186.
doi: 10.1002/adma.201901186
50 KANG Y , JIANG Z H , MA T , et al. Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties[J]. ACS Applied Materials & Interfaces, 2016, 8 (47): 32468- 32476.
51 BAI Y Q , ZHONG B , YU Y L , et al. Mass fabrication and superior microwave absorption property of multilayer graphene/hexagonal boron nitride nanoparticle hybrids[J]. npi 2D Materials and Applications, 2019, 3 (1): 1- 10.
doi: 10.1038/s41699-018-0083-1
52 FANG S , HUANG D Q , LV R T , et al. Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2-4 GHz)[J]. RSC Advances, 2017, 7 (41): 25773- 25779.
doi: 10.1039/C7RA03215C
53 AROOJ Y , ZHAO Y , HAN X , et al. Combined effect of graphene oxide and MWCNTs on microwave absorbing performance of epoxy composites[J]. Polymers for Advanced Technologies, 2015, 26 (6): 620- 625.
doi: 10.1002/pat.3496
54 WANG Y F , CHEN D L , YIN X , et al. Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces, 2015, 7 (47): 26226- 26234.
55 ZHANG D Q , JIA Y X , CHENG J Y , et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures[J]. Journal of Alloys and Compounds, 2018, 758, 62- 71.
doi: 10.1016/j.jallcom.2018.05.130
56 SHAHZAD F , ALHABEB M , HATTER C B , et al. Electromagnetic interference shielding with 2D transition metal carbides(MXenes)[J]. Science, 2016, 353 (6304): 1137- 1140.
doi: 10.1126/science.aag2421
57 LI X L , YIN X W , LIANG S , et al. 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material[J]. Carbon, 2019, 146, 210- 217.
doi: 10.1016/j.carbon.2019.02.003
58 CAO M S , CAI Y Z , HE P , et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 359, 1265- 1302.
doi: 10.1016/j.cej.2018.11.051
59 SONG Q , YE F , KONG L , et al. Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials, 2020, 30 (31): 2000475.
doi: 10.1002/adfm.202000475
60 LUO H , FENG W L , LIAO C W , et al. Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption[J]. Journal of Applied Physics, 2018, 123 (10): 104103.
doi: 10.1063/1.5008323
61 WANG L B , LIU H , LV X L , et al. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2020, 828, 154251.
doi: 10.1016/j.jallcom.2020.154251
62 LI Y , MENG F B , MEI Y , et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal, 2020, 391, 123512.
doi: 10.1016/j.cej.2019.123512
63 MA J , LIU W , QUAN B , et al. Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior[J]. Journal of Colloid and Interface Science, 2017, 504, 479- 484.
doi: 10.1016/j.jcis.2017.06.004
64 HAN M K , YIN X W , LI X L , et al. Laminated and Two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9 (23): 20038- 20045.
65 WANG L , DING X , HUANG Y , et al. Ternary nanocomposites of graphene@SiO2@NiO nanoflowers: synthesis and their microwave electromagnetic properties[J]. Micro & Nano Letters, 2013, 8 (8): 391- 394.
66 YANG S , GUO X , CHEN P , et al. Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption[J]. Journal of Alloys and Compounds, 2019, 797, 1310- 1319.
doi: 10.1016/j.jallcom.2019.05.190
67 FENG W , WANG Y , CHEN J , et al. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties[J]. Carbon, 2016, 108, 52- 60.
doi: 10.1016/j.carbon.2016.06.084
68 王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49 (2): 18- 28.
68 WANG X X , CAO M S . Featured research report: research progress of low-dimensional electromagnetic functional materials[J]. Surface Technology, 2020, 49 (2): 18- 28.
69 ZHUO R F , QIAO L , FENG H T , et al. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees[J]. Journal of Applied Physics, 2008, 104 (9): 094101.
doi: 10.1063/1.2973198
70 CHEN Y J , CAO M S , WANG T H , et al. Microwave absorption properties of the ZnO nanowire-polyester composites[J]. Applied Physics Letters, 2004, 84 (17): 3367- 3369.
doi: 10.1063/1.1702134
71 ZHANG L , ZHANG X H , ZHANG G J , et al. Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites[J]. RSC Advances, 2015, 5 (14): 10197- 10203.
doi: 10.1039/C4RA12591F
72 FENG W , WANG Y M , CHEN J C , et al. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites[J]. Physical Chemistry Chemical Physics, 2017, 19 (22): 14596- 14605.
doi: 10.1039/C7CP02039B
73 JIANG Y , CHEN Y , LIU Y J , et al. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption[J]. Chemical Engineering Journal, 2018, 337, 522- 531.
doi: 10.1016/j.cej.2017.12.131
74 ZHANG X J , WANG G S , WEI Y Z , et al. Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride[J]. Journal of Materials Chemistry: A, 2013, 1 (39): 12115.
doi: 10.1039/c3ta12451g
75 RAN J , GUO M J , ZHONG L , et al. In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: a lightweight electromagnetic absorber[J]. Journal of Alloys and Compounds, 2019, 773, 423- 431.
doi: 10.1016/j.jallcom.2018.09.142
76 WANG Z Q , ZHAO P F , HE D N , et al. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance[J]. Physical Chemistry Chemical Physics, 2018, 20, 14155- 14165.
doi: 10.1039/C8CP00160J
77 TANG H X , ZHOU Z , SODANO H A . Relationship between Ba TiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites[J]. ACS Applied Materials & Interfaces, 2014, 6 (8): 5450- 5455.
78 SHE W , BI H , WEN Z W , et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography[J]. ACS Applied Materials & Interfaces, 2016, 8 (15): 9782- 9789.
79 ZHANG D D , ZHAO D L , ZHANG J M , et al. Microwave absorbing property and complex permittivity and permeability of graphene-CdS nanocomposite[J]. Journal of Alloys and Compounds, 2014, 589, 378- 383.
doi: 10.1016/j.jallcom.2013.11.195
80 CHEN J P , JIA H , LIU Z , et al. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption[J]. Carbon, 2020, 164, 59- 68.
doi: 10.1016/j.carbon.2020.03.049
[1] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[2] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[3] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[4] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[5] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[6] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[7] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[8] 高晔, 姜卓钰, 周怡然, 吕晓旭, 宋伟, 焦健. 正交铺层PIP-SiCf/SiC复合材料的水淬失效行为[J]. 材料工程, 2022, 50(3): 166-172.
[9] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[10] 白龙腾, 成来飞, 杨晓辉, 曹晶, 王毅. 双组元液体动力环境下3D C/SiC复合材料喷管烧蚀性能[J]. 材料工程, 2022, 50(2): 118-126.
[11] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[12] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[13] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[14] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[15] 于长清, 余悠然, 赵英民, 谢宁. 石墨热压还原Cu/Cu2O金属陶瓷电导逾渗行为与微观结构分形表征[J]. 材料工程, 2022, 50(1): 154-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn