Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 20-34    DOI: 10.11868/j.issn.1001-4381.2021.000597
  异质材料连接及界面行为专栏 本期目录 | 过刊浏览 | 高级检索 |
超声对铝/镁异质合金搅拌摩擦焊接成形的影响
王涛, 武传松()
山东大学 材料液固结构演变与加工教育部重点实验室,济南 250061
Effect of ultrasonic on friction stir welding formation of aluminum/magnesium dissimilar alloys
Tao WANG, Chuansong WU()
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
全文: PDF(55569 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

开展了厚度为4 mm的6061铝合金/AZ31B镁合金板的搅拌摩擦对接工艺实验,对比分析了常规搅拌摩擦焊(FSW)和超声振动强化搅拌摩擦焊(UVeFSW)的焊缝横截面与水平截面的材料流动情况、界面金属间化合物厚度、机械锁合程度以及接头拉伸性能等,探究了超声振动的作用机理。结果表明:超声振动能够促进接头不同部位的材料流动和热量传输,从而减小甚至消除焊接缺陷; 施加超声振动后,铝/镁界面处的金属间化合物均有所减薄,同时界面机械锁合程度也均有所增强,因此UVeFSW接头的抗拉强度相比于同一工艺参数时FSW接头有所提高,施加超声振动后接头的最高抗拉强度达到了174.20 MPa。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王涛
武传松
关键词 搅拌摩擦焊超声振动材料流动金属间化合物机械锁合力学性能    
Abstract

The friction stir butt joint process experiment of 6061 aluminum alloy/AZ31B magnesium alloy plate with thickness of 4 mm was carried out. The material flow in transverse cross-section and horizontal-section, the thickness of the intermetallic compound layers, the mechanical interlocking, and the tensile properties of conventional friction stir welding (FSW) and ultrasonic vibration enhanced friction stir welding (UVeFSW) were compared and analyzed. The action mechanism of ultrasonic vibration was explored. The results show that ultrasonic vibration can promote material flow and heat transfer in different parts of the joint, thereby reduce or even eliminate weld defects. When ultrasonic vibration is applied, the intermetallic compound layer at the aluminum/magnesium interface is thinned, and the mechanical interlocking on the interface is enhanced, so the tensile strength of the UVeFSW joints is improved compared to the FSW joint under the same process parameters. The maximum tensile strength of the UVeFSW joints reaches 174.20 MPa.

Key wordsfriction stir welding    ultrasonic vibration    material flow    intermetallic compound    mechanical interlocking    mechanical property
收稿日期: 2021-06-28      出版日期: 2022-05-23
中图分类号:  TG44  
基金资助:国家自然科学基金重点资助项目(52035005)
通讯作者: 武传松     E-mail: wucs@sdu.edu.cn
作者简介: 武传松(1959—),男,教授,博士,研究方向为焊接物理、高效焊接工艺数值模拟与检测控制,联系地址:山东省济南市经十路17923号山东大学材料科学与工程学院(250061),E-mail: wucs@sdu.edu.cn
引用本文:   
王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
Tao WANG, Chuansong WU. Effect of ultrasonic on friction stir welding formation of aluminum/magnesium dissimilar alloys. Journal of Materials Engineering, 2022, 50(5): 20-34.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000597      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/20
Material Al Mg Si Fe Cu Mn Zn Cr Ti
6061-T6 Bal 0.85 0.50 0.350 0.08 0.08 0.09 0.08
AZ31B-H24 3.20 Bal 0.07 0.001 0.01 0.70 1.40
Table 1  母材的名义化学成分(质量分数/%)
Material Tensile strength/MPa Elongation/%
6061-T6 290.17 15.75
AZ31B-H24 250.26 7.58
Table 2  母材的力学性能
Fig.1  超声强化搅拌摩擦焊过程示意图[7]
Fig.2  FSW焊缝局部区域材料的宏观流动情况
(a)接头横断面; (b)F1区域; (c)F2区域
Fig.3  UVeFSW焊缝局部区域材料的宏观流动情况
(a)接头横断面; (b)U1区域; (c)U2区域
Fig.4  取样位置示意图
(a)水平面位置; (b)取样位置
Fig.5  HP-1水平面材料宏观流动
(a)FSW; (b)UVeFSW
Fig.6  HP-2水平面材料宏观流动
(a)FSW; (b)UVeFSW
Fig.7  HP-3水平面材料宏观流动
(a)FSW; (b)UVeFSW
Fig.8  焊缝横断面宏观金相图像(ω=600 r/min,v=40 mm/min)
(a)FSW; (b)UVeFSW
Fig.9  焊缝横断面宏观金相图像(ω=900 r/min,v=50 mm/min)
(a)FSW; (b)UVeFSW
Fig.10  焊核区微观区域结合情况(ω=700 r/min, v=40 mm/min)
(a)FSW; (b)UVeFSW
Fig.11  高热输入时界面IMCs位置选取
(a)FSW; (b)UVeFSW
Fig.12  低热输入时界面IMCs位置选取
(a)FSW; (b)UVeFSW
Fig.13  焊缝Al/Mg界面T(1), M(2), B(3)区域的SEM图像(ω=800 r/min, v=20 mm/min)
(a)FSW; (b)UVeFSW
Fig.14  焊缝Al/Mg界面T(1), M(2), B(3)区域的SEM图像(ω=700 r/min, v=40 mm/min)
(a)FSW; (b)UVeFSW
Fig.15  高热输入时FSW接头界面形貌
(a)界面宏观形貌; (b)~(e)F1~F4区域界面微观形貌
Fig.16  高热输入时UVeFSW接头界面形貌
(a)界面宏观形貌; (b)~(e)U1~U4区域界面微观形貌
Fig.17  低热输入时FSW接头界面形貌
(a)界面宏观形貌; (b)~(e)F1~F4区域界面微观形貌
Fig.18  低热输入时UVeFSW接头界面形貌
(a)界面宏观形貌; (b)~(e)U1~U4区域界面微观形貌
Process condition Rotation speed/(r·min-1) Welding speed/(mm·min-1)
High heat input 800 20
Low heat input 700 40
Optimal parameter 800 40
Table 3  三组典型工艺参数
Fig.19  FSW和UVeFSW接头的抗拉强度
Fig.20  FSW(1)与UVeFSW(2)接头的断裂位置
(a)高热输入(ω=800 r/min, v=20 mm/min); (b)低热输入(ω=700 r/min, v=40 mm/min)
Fig.21  接头断口的宏观金相照片
(a)FSW; (b)UVeFSW
Fig.22  FSW接头断口形貌
(a)断口形貌; (b)A处局部放大图; (c)B处局部放大图
Fig.23  UVeFSW接头断口形貌
(a)断口形貌; (b)A处局部放大图; (c)B处局部放大图; (d)C处局部放大图
1 SINGH V P , PATEL S K , RANJAN A , et al. Recent research progress in solid state friction-stir welding of aluminium-magne-sium alloys: a critical review[J]. Journal of Materials Research and Technology, 2020, 9 (3): 6217- 6256.
doi: 10.1016/j.jmrt.2020.01.008
2 FU B L , QIN G L , LI F , et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. Journal of Materials Processing Technology, 2015, 218, 38- 47.
doi: 10.1016/j.jmatprotec.2014.11.039
3 LIU F , WANG H , LIU L . Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn-29.5Al-0.5Ti filler metal[J]. Materials Characterization, 2014, 90, 1- 6.
doi: 10.1016/j.matchar.2014.01.010
4 VARMAZYAR J , KHODAEI M . Diffusion bonding of aluminum-magnesium using cold rolled copper interlayer[J]. Journal of Alloys and Compounds, 2018, 773, 838- 843.
5 BANNOUR S , ABDERRAZAK K , MATTEI S , et al. The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds[J]. Journal of Laser Applications, 2013, 25 (3): 032001.
doi: 10.2351/1.4792615
6 WU C S , LV X Q , SU H , et al. Research progress in dissimilar friction stir welding of aluminium/magnesium alloys[J]. Journal of Mechanical Engineering, 2020, 56 (6): 4- 16.
doi: 10.3901/JME.2020.06.004
7 ZHAO J J , WU C S , SU H . Ultrasonic effect on thickness variations of intermetallic compound layers in friction stir welding of aluminium/magnesium alloys[J]. Journal of Manufacturing Processes, 2021, 62, 388- 402.
doi: 10.1016/j.jmapro.2020.12.028
8 赵俊杰, 宿浩, 石磊, 等. 超声功率对UVeFSW铝-镁合金异质接头组织与性能的影响[J]. 机械工程学报, 2020, 56 (6): 24- 32.
8 ZHAO J J , SU H , SHI L , et al. Effect of exterted ultrasonic power on microstructure and properties of dissimilar Al/Mg alloys UVeFSW joints[J]. Journal of Mechanical Engineering, 2020, 56 (6): 24- 32.
9 FIROUZDOR V , KOU S . Al-to-Mg friction stir welding: effect of positions of Al and Mg with respect to the welding tool[J]. Welding Journal, 2009, 88 (Suppl): 213- 224.
10 MOHAMMADI J , BEHNAMIAN Y , MOSTAFAEI A , et al. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations[J]. Materials Characterization, 2015, 101, 189- 207.
doi: 10.1016/j.matchar.2015.01.008
11 KOSTKA A , COELHO R S , dos SANTOS J , et al. Microstructure of friction stir welding of aluminium alloy to magne-sium alloy[J]. Scripta Materialia, 2009, 60 (11): 953- 956.
doi: 10.1016/j.scriptamat.2009.02.020
12 SATO Y S , PARK S H C , MICHIUCHI M , et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys[J]. Scripta Materialia, 2004, 50 (9): 1233- 1236.
doi: 10.1016/j.scriptamat.2004.02.002
13 YAMAMOTO N , LIAO J S , WATANABE S , et al. Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy[J]. Materials Transactions, 2009, 50 (12): 2833- 2838.
doi: 10.2320/matertrans.M2009289
14 MOFID M A , ABDOLLAH-ZADEH A , GHAINI F M , et al. Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: an improved method to join Al alloys to Mg alloys[J]. Metallurgical and Materials Transactions A, 2012, 43 (13): 5106- 5114.
doi: 10.1007/s11661-012-1314-2
15 MOFID M A , ABDOLLAH-ZADEH A , GUER C H . Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen[J]. The International Journal of Advanced Ma-nufacturing Technology, 2014, 71 (5/8): 1493- 1499.
16 陈峥, 刘峥. 厚板铝/镁合金红外热源辅助搅拌摩擦焊力学性能与组织分析[J]. 焊接技术, 2014, 43 (9): 9- 11.
16 CHEN Z , LIU Z . Analysis on the microstructure and mechanical properties of plank aluminum/magnesium alloy by friction stir welding with auxiliary infrared heat-source[J]. Welding Technology, 2014, 43 (9): 9- 11.
17 CHANG W S , RAJESH S R , CHUN C K , et al. Microstructure and mechanical properties of hybrid laser-friction stir wel-ding between AA6061-T6 Al alloy and AZ31 Mg alloy[J]. Journal of Materials Science & Technology, 2011, 27 (3): 199- 204.
18 刘震磊. 超声辅助航空Al/Mg材料搅拌摩擦焊机理及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
18 LIU Z L. Research of process and mechanism of ultrasonic assisted friction stir welding Al/Mg materials used in aviation[D]. Harbin: Harbin Institute of Technology, 2016.
19 TARASOV S Y , RUBTSOV V E , FORTUNA S V , et al. Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy[J]. Welding in the World, 2017, 61 (4): 679- 690.
doi: 10.1007/s40194-017-0447-8
20 JI S D , LI Z W , MA L , et al. Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy[J]. Strength of Materials, 2016, 48 (1): 2- 7.
doi: 10.1007/s11223-016-9730-y
21 STRASS B , WAGNER G , EIFLER D . Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding[J]. Materials Science Forum, 2014, 783/786, 1814- 1819.
doi: 10.4028/www.scientific.net/MSF.783-786.1814
22 白英浩. 铝/镁异质合金超声辅助搅拌摩擦焊试验研究[D]. 济南: 山东大学, 2020.
22 BAI Y H. Experimental study on ultrasonic-assisted friction stir welding of dissimilar Al/Mg alloys[D]. Jinan: Shandong University, 2020.
23 LV X Q , WU C S , YANG C L , et al. Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy[J]. Journal of Materials Processing Technology, 2018, 254, 145- 157.
doi: 10.1016/j.jmatprotec.2017.11.031
[1] 李鹏, 邹存柱, 董红刚, 吴宝生, 李超, 杨跃森, 闫德俊. Fe/Al异质金属接头界面组织演变、生长动力学及力学性能[J]. 材料工程, 2022, 50(5): 43-51.
[2] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[3] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[4] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[5] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[6] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[7] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[8] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[9] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[10] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[11] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[12] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[13] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[14] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[15] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn