Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 43-51    DOI: 10.11868/j.issn.1001-4381.2021.000694
  异质材料连接及界面行为专栏 本期目录 | 过刊浏览 | 高级检索 |
Fe/Al异质金属接头界面组织演变、生长动力学及力学性能
李鹏1, 邹存柱1, 董红刚1,*(), 吴宝生1, 李超1, 杨跃森1, 闫德俊2
1 大连理工大学 材料科学与工程学院,辽宁 大连 116024
2 中船黄埔文冲船舶有限公司 广东省舰船先进焊接技术 企业重点实验室,广州 510715
Interfacial microstructure evolution, growth kinetics and mechanical properties of Fe/Al dissimilar metal joints
Peng LI1, Cunzhu ZOU1, Honggang DONG1,*(), Baosheng WU1, Chao LI1, Yuesen YANG1, Dejun YAN2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships, CSSC Huangpu Wenchong Shipbuilding Co., Ltd., Guangzhou 510715, China
全文: PDF(7032 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用真空扩散连接方法研究Fe/Al异质金属接头界面组织演变规律、金属间化合物(intermetallic compound,IMC)生长动力学及力学性能。结果表明:焊接温度为550 ℃时,接头界面无IMC生成,当焊接温度超过575 ℃时,界面由Fe2Al5及少量FeAl3 IMC构成,且随焊接温度升高IMC层迅速长大。在120 min保温时间条件下,接头剪切强度随焊接温度的升高先增加后降低,当焊接温度为575 ℃时,接头剪切强度达到最大值37 MPa。在550~625 ℃范围内,基于热力学分析得出Fe2Al5的吉布斯自由能ΔGFe-Al最低,而FeAl3的ΔGFe-Al次之,在接头界面处IMC生成顺序为Fe2Al5→FeAl3。Fe/Al接头界面IMC的生长随焊接温度呈抛物线规律,其生长激活能为282.6 kJ·mol-1。在575,600,625 ℃条件下,界面IMC的生长速率分别为1.13×10-14,3.59×10-14,1.21×10-13 m2·s-1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹏
邹存柱
董红刚
吴宝生
李超
杨跃森
闫德俊
关键词 Fe/Al异质金属扩散连接金属间化合物生长动力学    
Abstract

The interfacial microstructure evolution, growth kinetics of the intermetallic compound (IMC) and mechanical properties of Fe/Al dissimilar metal joints were investigated by vacuum diffusion bonding. The results show that there is no IMC formed on the interface of the joint bonded at temperature of 550 ℃. When the bonding temperature exceeds 575 ℃, the interfacial region is composed of Fe2Al5 and a small amount of FeAl3, and the thickness of IMC layer increases rapidly with the increase of bonding temperature.Under the bonding time of 120 min, the shear strength of the joint increases first and then decreases with the increase of the bonding temperature, and the shear strength of the joint reaches the maximum value of 37 MPa.According to thermodynamic theory, the Gibbs free energy change of Fe2Al5 is the lowest in the range from 550 ℃ to 625 ℃, and then followed by that of FeAl3, and the generated sequence of interfacial IMC can be: Fe2Al5→FeAl3. The interfacial IMC grow in a parabolic manner as a function of bonding temperature, and its growth activation energy is 282.6 kJ·mol-1.The growth rates of IMC at the interface are 1.13× 10-14, 3.59×10-14, 1.21×10-13 m2·s-1 at 575, 600, 625 ℃ respectively.

Key wordsFe/Al dissimilar metal    diffusion bonding    intermetallic compound    growth kinetics
收稿日期: 2021-07-25      出版日期: 2022-05-23
中图分类号:  TG401  
基金资助:国家自然科学基金项目(52075074);中央高校基本科研业务费(DUT21 JC16);广东特支计划(2019TQ05C752)
通讯作者: 董红刚     E-mail: donghg@dlut.edu.cn
作者简介: 董红刚(1975—),男,教授,博士,主要从事异种材料连接工艺与冶金机理、焊接材料成分设计、焊接热过程数值计算的研究,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学铸造中心304室(116024),E-mail:donghg@dlut.edu.cn
引用本文:   
李鹏, 邹存柱, 董红刚, 吴宝生, 李超, 杨跃森, 闫德俊. Fe/Al异质金属接头界面组织演变、生长动力学及力学性能[J]. 材料工程, 2022, 50(5): 43-51.
Peng LI, Cunzhu ZOU, Honggang DONG, Baosheng WU, Chao LI, Yuesen YANG, Dejun YAN. Interfacial microstructure evolution, growth kinetics and mechanical properties of Fe/Al dissimilar metal joints. Journal of Materials Engineering, 2022, 50(5): 43-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000694      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/43
Material C Si Mn P S Cu Al Ni Fe
Iron 0.003 0.009 0.032 0.007 0.005 0.001 0.01 0.01 Bal
Aluminum 0.25 0.03 0.05 Bal 0.35
Table 1  1060纯铝和工业纯铁的化学成分(质量分数/%)
Fig.1  Fe/Al异质金属焊接试样尺寸示意图(a)和接头宏观形貌(b)
Group Temperature/℃ Time/min Pressure/MPa
1 550 120 1
2 575 120 1
3 600 120 1
4 625 120 1
Table 2  扩散连接工艺参数
Fig.2  扩散连接工艺参数曲线
Fig.3  剪切实验试样尺寸(a)和示意图(b)
Fig.4  不同焊接温度下Fe/Al接头界面微观组织
(a)550 ℃; (b)575 ℃; (c)600 ℃; (d)625 ℃
Fig.5  不同焊接温度下Fe/Al接头界面微观组织(1)及线扫描分析结果(2)
(a)550 ℃; (b)575 ℃; (c)600 ℃; (d)625 ℃
Location Fe Al Possible phase
A 26.61 73.39 Fe2Al5
B 27.25 72.75 Fe2Al5
C 27.19 72.81 Fe2Al5
D 27.84 72.16 Fe2Al5
E 28.82 71.18 Fe2Al5
F 23.61 76.39 FeAl3
G 28.33 71.67 Fe2Al5
H 28.64 71.36 Fe2Al5
I 23.55 76.45 FeAl3
Table 3  图 5位置A~I的化学成分(原子分数/%)
Fig.6  焊接温度575 ℃下接头断口表面XRD谱图
(a)Fe侧; (b)Al侧
Fig.7  不同焊接温度下Fe/Al接头剪切强度
IMC Chemical reaction ΔH298/(kJ·mol-1)[19] S298/(kJ·mol-1·K-1)[19]
Fe2Al5 2Fe+5Al=Fe2Al5 -201.6 0.154
FeAl3 Fe+3Al=FeAl3 -111.4 0.095
FeAl2 Fe+2Al=FeAl2 -81.6 0.073
FeAl Fe+Al=FeAl -48.5 0.051
Fe3Al 3Fe+Al=Fe3Al -57.2 0.028
Table 4  Fe-Al体系中发生的化学反应以及IMC的标准生成焓和标准熵值
IMC ΔGFe-Al/(kJ·mol-1)
Fe2Al5 -201.6+0.04T
FeAl3 -111.4+0.016T
FeAl2 -81.6+0.01T
FeAl -48.5+0.004T
Fe3Al -57.2+0.081T
Table 5  Fe-Al金属间化合物ΔGFe-Al与焊接温度的关系
Fig.8  IMC吉布斯自由能变与焊接温度的关系
Temperature/℃ Time/min Average thickness/μm
575 120 9.00
600 120 16.07
625 120 29.55
Table 6  不同工艺条件下IMC的平均厚度
Fig.9  界面反应层的生长曲线(a)和生长激活能(b)
Fig.10  接头界面IMC生长示意图
(a)原子扩散; (b)Fe2Al5形成阶段; (c)FeAl3形核阶段; (d)IMC连续生长
1 邱然锋, 于华, 石红信, 等. 铝合金与不锈钢电阻点焊接合界面区的组织特性[J]. 焊接学报, 2011, 32 (12): 37- 40.
1 QIU R F , YU H , SHI H X , et al. Interfacial characteristics of welded joint between aluminum alloy and stainless steel by resistance spot welding[J]. Transactions of the China Welding Institution, 2011, 32 (12): 37- 40.
2 MARTINSEN K , HU S J , CARLSON B , et al. Joining of dissimilar materials[J]. Cirp Annals Manufacturing Technology, 2015, 64, 679- 699.
doi: 10.1016/j.cirp.2015.05.006
3 LU Y , MAYTON E , SONG H , et al. Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding-microstructure and mechanical properties[J]. Materials & Design, 2019, 165, 107585.
4 YANG J , OLIVEIRA J P , LI Y L , et al. Dissimilar laser techniques for joining of aluminum alloys to steels: a critical review[J]. Journal of Materials Processing Technology, 2022, 301, 117443.
doi: 10.1016/j.jmatprotec.2021.117443
5 韦竺施, 崔丽, 贺定勇, 等. 钢/铝异种合金激光深熔焊接头界面金属间化合物的EBSD研究[J]. 材料工程, 2018, 46 (7): 117- 124.
5 WEI Z S , CUI L , HE D Y , et al. EBSD investigation of intermeta-llic compounds at interface of steel/aluminum dissimilar alloy joints produced by laser keyhole welding[J]. Journal of Materials Engineering, 2018, 46 (7): 117- 124.
6 HATANO R , OGURA T , MATSUDA T , et al. Relationship between intermetallic compound layer thickness with deviation and interfacial strength for dissimilar joints of aluminum alloy and stainless steel[J]. Materials Science and Engineering: A, 2018, 735, 361- 366.
doi: 10.1016/j.msea.2018.08.065
7 王建民, 朱锡, 刘润泉. 铝/钢爆炸复合界面的显微分析[J]. 材料工程, 2006, (11): 36- 39.
7 WANG J M , ZHU X , LIU R Q . Micro-analysis of bonding interface of explosive welded aluminum/steel plates[J]. Journal of Materials Engineering, 2006, (11): 36- 39.
8 WANG C , JIANG Y , XIE J , et al. Interface formation and bonding mechanism of embedded aluminum-steel composite sheet during cold roll bonding[J]. Materials Science and Engineering: A, 2017, 708, 50- 59.
doi: 10.1016/j.msea.2017.09.111
9 ZHANG Y , FAN Y , ZHAO X , et al. Influence of graphite morphology on phase, microstructure, and properties of hot dipping and diffusion aluminizing coating on flake/spheroidal graphite cast iron[J]. Metals, 2019, 9 (4): 450.
doi: 10.3390/met9040450
10 LI Y J , WANG J , HOLLY X . X-ray diffraction and TEM analysis of Fe-Al alloy layer in coating of new hot dip aluminised steel[J]. Materials Science & Technology, 2013, 19 (5): 657- 660.
11 申中宝, 邱然锋, 石红信, 等. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40 (6): 58- 63.
11 SHEN Z B , QIU R F , SHI H X , et al. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. Transactions of the China Welding Institution, 2019, 40 (6): 58- 63.
12 CHEN N , MIN W , WANG H P , et al. Microstructural and mechanical evolution of Al/steel interface with Fe2Al5 growth in resistance spot welding of aluminum to steel[J]. Journal of Manufacturing Processes, 2018, 34, 424- 434.
doi: 10.1016/j.jmapro.2018.06.024
13 YANG Y C , ZHANG F Y , HE J N , et al. Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection[J]. Vacuum, 2018, 151, 189- 196.
doi: 10.1016/j.vacuum.2018.02.018
14 SPRINGER H , SZCZEPANIAK A , RAABE D . On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminum alloys[J]. Acta Materialia, 2015, 96, 203- 211.
doi: 10.1016/j.actamat.2015.06.028
15 刘敏, 曹鹏, 张丽娜, 等. LD10铝合金与C6不锈钢真空扩散焊接工艺研究[J]. 航天制造技术, 2019, (4): 48- 52.
15 LIU M , CAO P , ZHANG L N , et al. Study on vacuum diffusion welding between LD10 aluminum alloy and C6 stainless steel[J]. Aeronautical Manufacturing Technology, 2019, (4): 48- 52.
16 YAN Y B , ZHANG Z W , SHEN W , et al. Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate[J]. Materials Science and Engineering: A, 2010, 527 (9): 2241- 2245.
17 LI R , YUAN T , LIU X , et al. Enhanced atomic diffusion of Fe-Al diffusion couple during spark plasma sintering[J]. Scripta Materialia, 2016, 110, 105- 108.
18 ZHANG Y , LONG B Z , MENG K , et al. Diffusion bonding of Q345 steel to zirconium using an aluminum interlayer[J]. Journal of Materials Processing Technology, 2019, 275, 116352.
19 曹永泽. 钢铝轧制复合界面化合物的抑制机理研究[D]. 沈阳: 东北大学, 2009.
19 CAO Y Z. Study on inhibition mechanism of the interface compounds in steel-aluminum rolling[D]. Shenyang: Northeastern University, 2009.
20 XU L , CUI Y Y , HAO Y L , et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples[J]. Materials Science and Engineering: A, 2006, 435/436 (4): 638- 647.
21 HUANG H G , CHEN P , JI C . Solid-liquid cast-rolling bonding (SLCRB) and annealing of Ti/Al cladding strip[J]. Materials & Design, 2017, 118, 233- 244.
22 SUN D , ZHANG Y , LIU Y , et al. Microstructures and mechanical properties of resistance spot welded joints of 16Mn steel and 6063-T6 aluminum alloy with different electrodes[J]. Materials & Design, 2016, 109, 596- 608.
[1] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[2] 宋富阳, 张剑, 郭会明, 张迈, 赵云松, 沙江波. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65-74.
[3] 张勋业, 张秋光, 林盼盼, 王春月, 何鹏, 林铁松, 龙伟民. Ti2AlNb合金与钛基复合材料的低温固相扩散连接机理[J]. 材料工程, 2021, 49(1): 95-103.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 黄昊, 赵晶晶, 韩翠柳, 杨新宇, 潘亚飞, 张久兴. 基于制备钨钼复合靶材的SPS烧结连接[J]. 材料工程, 2020, 48(3): 84-91.
[6] 卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋. 回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变[J]. 材料工程, 2018, 46(6): 95-100.
[7] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
[8] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[9] 董凤, 陈少平, 胡利方, 樊文浩, 孟庆森. 电场作用下AZ31B/Cu扩散界面的结构及性能[J]. 材料工程, 2015, 43(2): 35-40.
[10] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
[11] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[12] 张亮, 韩继光, 何成文, 郭永环, 张剑. 热循环对SnAgCu(纳米Al)/Cu焊点界面与性能影响[J]. 材料工程, 2014, 0(3): 55-59.
[13] 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, 0(12): 60-65.
[14] 张果, 杜军, 李文芳, 豆琦, 蔡添祥. Ca和La对Mg-5Sn-2Si合金组织和蠕变性能的影响[J]. 材料工程, 2013, 0(4): 81-84.
[15] 王红星, 杨少锋, 柳秉毅, 张炎. 料浆包渗温度对渗Si层组织结构和性能的影响[J]. 材料工程, 2013, (2): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn