Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 90-99    DOI: 10.11868/j.issn.1001-4381.2020.000383
  综述 本期目录 | 过刊浏览 | 高级检索 |
原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展
于永涛1, 刘元军1,2,3,4,*()
1 天津工业大学 纺织科学与工程学院, 天津 300387
2 天津工业大学 天津市先进纺织复合材料重点实验室, 天津 300387
3 天津工业大学 天津市先进纤维与储能技术重点实验室, 天津 300387
4 山东滨州亚光毛巾有限公司, 山东 滨州 256600
Researth progress in preparation of ferrite/polyaniline absorbing composites by in situ polymerization
Yongtao YU1, Yuanjun LIU1,2,3,4,*()
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
3 Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tiangong University, Tianjin 300387, China
4 Loftex Industries Co., Ltd., Binzhou 256600, Shandong, China
全文: PDF(5764 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

电磁污染已成为继空气污染、水污染和噪声污染之后的第四大污染, 吸波材料因其吸收和衰减特性, 可以作为解决电磁污染的有效手段。聚苯胺(PANI)作为一种电阻损耗型吸波材料, 可以满足吸波材料"厚度薄"、"质量轻"的发展理念, 但由于阻抗匹配度差, 吸波性能并不理想。铁氧体作为一类传统的磁损耗型吸波材料, 因其密度较高使其适用范围受到限制。高密度的铁氧体与低密度的聚苯胺复合制备的吸波材料, 不仅可以调整复合材料的密度, 而且还能改善复合材料的阻抗匹配, 提高铁氧体/聚苯胺复合材料的吸波性能。本文首先探讨了聚苯胺以及铁氧体/聚苯胺复合材料的制备方法, 其次阐述了铁氧体/聚苯胺复合材料的吸波机理。然后分别归纳了尖晶石型、磁铅石型、石榴石型铁氧体与聚苯胺制备的复合材料在吸波领域的研究进展。最后指出铁氧体/聚苯胺复合材料应趋向于电磁仿真和多元复合化的方向发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于永涛
刘元军
关键词 聚苯胺尖晶石型铁氧体磁铅石型铁氧体石榴石型铁氧体原位聚合法吸波材料复合材料    
Abstract

Electromagnetic (EM) pollution has become the fourth largest pollution after air pollution, water pollution and noise pollution. Using of EM absorbing materials is an effective way to solve electromagnetic pollution problem, due to their absorption and attenuation characteristics. Polyaniline (PANI), as a kind of resistance loss absorbing material, can meet the development concept of "thin thickness" and "light mass" of absorbing materials. However, its absorbing performance is not ideal due to its poor impedance matching, ferrite, as a kind of traditional magnetic loss-type absorbing material, is limited in its application range due to its high density. The high-density ferrite and low-density polyaniline composite wave-absorbing material can not only adjust the density of the composite material, but also improve the impedance matching, and the wave-absorbing performance of the ferrite/polyaniline composite. In this paper, the preparation methods of polyaniline and ferrite/polyaniline composites were discussed firstly. Secondly, the absorbing mechanism of ferrite/polyaniline composites was expounded. Then, the research progress of composite materials prepared by spinel type, magnetic lead type, garnet type ferrite and polyaniline in the field of wave absorption was summarized, respectively. Finally, the future development directions of ferrite/polyaniline composites were pointed that they should tend to electromagnetic simulation and multi-element composites.

Key wordspolyaniline    spinel type ferrite    magneto-plumbite type ferrite    garnet type ferrite    in situ polymerization    electromagnetic absorbing material    composite
收稿日期: 2020-04-29      出版日期: 2022-05-23
中图分类号:  TB33  
基金资助:中国工程院咨询研究项目(2021DFZD1);天津市科技计划项目创新平台专项(17PTSYJC00150);中国博士后科学基金特别资助项目(2019TQ0181);中国博士后科学基金面上资助项目(2019M661030);天津市研究生科研创新项目(2019YJSS018);天津市研究生科研创新项目(2019YJSB197)
通讯作者: 刘元军     E-mail: liuyuanjunsd@163.com
作者简介: 刘元军(1986—),副教授,硕士生导师,研究方向为电磁防护材料, 联系地址:天津市西青区宾水西道399号(300387),E-mail:liuyuanjunsd@163.com
引用本文:   
于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
Yongtao YU, Yuanjun LIU. Researth progress in preparation of ferrite/polyaniline absorbing composites by in situ polymerization. Journal of Materials Engineering, 2022, 50(5): 90-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000383      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/90
Fig.1  中间氧化态掺杂的聚苯胺结构[25]
Fig.2  铁氧体/聚苯胺复合材料的合成机理[32-33]
RL/dB Absorption/%
-1 20.57
-5 68.38
-10 90.00
-15 96.84
-20 99.00
-25 99.68
-30 99.90
Table 1  反射损耗与吸收率之间的关系[35]
Fig.3  栅格状铁氧体吸波结构与CST仿真布局[36]
Fig.4  BaM/CO2Y@PANI复合材料的吸波机理[40]
Fig.5  尖晶石两个子晶格的晶体结构[41]
Absorbing composites Preparation method Frequency/GHz Thickness/mm Effective bandwidth/GHz RLmin/dB Ref
NiFe2O4@PANI/PI In situ polymerization 8.10 1.50 5.10 -19.20 [42]
PANI/NiFe2O4/graphite nanosheet Sol-gel, in situ polymerization 9.10 2.50 2.60 -30.00 [43]
PANI/Mn0.8Zn0.2Fe2O4 Coprecipitation, in situ polymerization 14.00 2.00 5.70 -20.60 [44]
PANI/Ni0.5Zn0.5Fe2O4 Sucrose, in situ polymerization 12.10 2.25 1.65 -44.23 [45]
Table 2  尖晶石型铁氧体/聚苯胺复合材料的吸波参数
Absorbing composites Preparation method Frequency/GHz Thickness/mm Effective bandwidth/GHz RLmin/dB Ref
BaFe12O19/PANI In situ polymerization 33.25 0.90 12.80 -30.50 [48]
BaFe12O19/PANI Sol-gel, in situ polymerization 12.80 2.00 3.80 -28.00 [49]
PANI/BaFe12O19/rGO Coprecipitation, in situ polymerization 8.60 2.60 0.90 -22.05 [50]
BaFe12O19/PANI Molten salt, in situ polymerization 17.28 1.47 2.30 -65.35 [51]
Table 3  磁铅石型铁氧体/聚苯胺复合材料的吸波参数
Fig.6  石榴石铁氧体结构中离子的空间分布及3种多面体结构[52]
1 LIU Y J , ZHAO X M , TUO X . The research of EM wave absorbing properties of ferrite/silicon carbide/graphite three-layer composite coating knitted fabrics[J]. Journal of the Textile Institute, 2016, 107 (4): 483- 492.
doi: 10.1080/00405000.2015.1045252
2 黄金国, 郭宇, 赵治亚, 等. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47 (6): 77- 81.
2 HUANG J G , GU Y , ZHAO Z Y , et al. Absorbing mechanism of ferrite magnetic materials and the research progress in improving the wave absorbing property[J]. Journal of Materials Engineering, 2019, 47 (6): 77- 81.
3 胡悦, 黄大庆, 史有强, 等. 耐高温陶瓷基结构吸波复合材料研究进展[J]. 航空材料学报, 2019, 39 (5): 1- 12.
3 HU Y , HUANG D Q , SHI Y Q , et al. Research progress of high temperature microwave-absorbing ceramic matrix composites[J]. Journal of Aeronautical Materials, 2019, 39 (5): 1- 12.
4 LIU Y J , ZHAO X M , TUO X . Study of graphite/silicon carbide coating of plain woven fabric for electrical megawatt absorbing properties[J]. Journal of the Textile Institute, 2017, 108 (4): 483- 488.
doi: 10.1080/00405000.2016.1171036
5 LIU Y J , ZHAO X M . Experimental studies on the dielectric behaviour of polyester woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2016, 24 (3): 67- 71.
6 刘元军, 刘国熠, 赵晓明. 聚吡咯/聚酯纤维复合材料吸波性能的探讨[J]. 材料科学与工艺, 2017, 25 (4): 31- 37.
6 LIU Y J , LIU G Y , ZHAO X M . The discussion on the microwave absorbing properties of the polypyrrole/polyester fiber composite material[J]. Materials Science & Technology, 2017, 25 (4): 31- 37.
7 于永涛, 王彩霞, 刘元军, 等. 含石墨烯导电吸波复合材料的研究进展[J]. 丝绸, 2020, 57 (4): 11- 16.
doi: 10.3969/j.issn.1001-7003.2020.04.003
7 YU Y T , WANG C X , LIU Y J , et al. Research progress of wave absorbing composites[J]. Journal of Silk, 2020, 57 (4): 11- 16.
doi: 10.3969/j.issn.1001-7003.2020.04.003
8 于永涛, 刘元军, 赵晓明. 吸波复合材料的研究进展[J]. 丝绸, 2019, 56 (12): 50- 58.
doi: 10.3969/j.issn.1001-7003.2019.12.008
8 YU Y T , LIU Y J , ZHAO X M . Research progress of graphene-contained conductive wave-absorbing composites[J]. Journal of Silk, 2019, 56 (12): 50- 58.
doi: 10.3969/j.issn.1001-7003.2019.12.008
9 QUAN B , LIANG X H , ZHANG X , et al. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness[J]. ACS Applied Materials & Interfaces, 2018, 10 (48): 41535- 41543.
10 YUAN H R , ZHANG X , YAN F , et al. Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials[J]. Carbon, 2018, 140, 368- 376.
doi: 10.1016/j.carbon.2018.08.073
11 HAN S J , WANG S Y , LI W H , et al. Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance[J]. Ceramics International, 2018, 44 (9): 10352- 10361.
doi: 10.1016/j.ceramint.2018.03.046
12 LI J , BI S , MEI B , et al. Effects of three-dimensional reduced graphene oxide coupled with nickel nanoparticles on the microwave absorption of carbon fiber based composites[J]. Journal of Alloys and Compounds, 2017, 717, 205- 213.
doi: 10.1016/j.jallcom.2017.03.098
13 LIU Y J , LIU B C , ZHAO X M . The influence of the type and concentration of oxidants on the dielectric constant of the polypyrrole-coated plain woven cotton fabric[J]. Journal of the Textile Institute, 2018, 109 (9): 1127- 1132.
doi: 10.1080/00405000.2017.1414668
14 LIU Y J , LIU Y C , ZHAO X M . The influence of pyrrole concentration on the dielectric properties of polypyrrole composite material[J]. Journal of the Textile Institute, 2017, 108 (7): 1246- 1249.
15 刘元军, 赵晓明, 梁腾隆. 聚苯胺复合材料的介电性能研究[J]. 材料导报, 2016, 30 (28): 304- 307.
15 LIU Y J , ZHAO X M , LIANG T L . Research on the dielectric properties of the polyaniline composite material[J]. Materials Review, 2016, 30 (28): 304- 307.
16 于永涛, 刘元军, 郭顺德, 等. 反应温度对改性Fe3O4/聚苯胺涤棉复合材料电磁性能的影响[J]. 纺织高校基础科学学报, 2021, 34 (2): 14- 20.
16 YU Y T , LIU Y J , GUO S D , et al. Influence of reaction temperature on electromagnetic properties of modified Fe3O4/polyaniline polyester-cotton composites[J]. Basic Sciences Journal of Textile Universities, 2021, 34 (2): 14- 20.
17 LIU Y J , ZHAO X M . The influence of dopant type and dosage on the dielectric properties of polyaniline/nylon composites[J]. Journal of the Textile Institute, 2017, 108 (9): 1628- 1633.
doi: 10.1080/00405000.2016.1271575
18 MENG X F , HAN Q X , SUN Y J , et al. Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite[J]. Ceramics International, 2019, 45, 2504- 2508.
doi: 10.1016/j.ceramint.2018.10.179
19 于永涛. 改性四氧化三铁/聚苯胺涤棉涂层织物的制备及电磁性能研究[D]. 天津: 天津工业大学, 2021.
19 YU Y T. Preparation and electromagnetic properties of modified Fe3O4/polyaniline poly-cotton coated fabric[D]. Tianjin: Tiangong University, 2021.
20 GHOLAMPOUR , MANDI , MOVASSAGH-ALANAGH , et al. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method[J]. Solid State Sciences, 2017, 64, 51- 61.
doi: 10.1016/j.solidstatesciences.2016.12.005
21 GUO F Y , ZI W W , JI G J , et al. Polyaniline containing W-type hexaferrite composites for microwave absorption in high-frequency applications[J]. Journal of Polymer Research, 2015, 22 (4): 1- 9.
22 李泽, 王建江, 高海涛, 等. 多孔羰基铁/COFe2O4/聚苯胺复合材料的制备及吸波机理[J]. 高等学校化学学报, 2019, 40 (8): 1784- 1792.
22 LI Z , WANG J J , GAO H T , et al. Fabrication and microwave absorption mechanism of PCIP/COFe2O4/PANI composites[J]. Chemical Journal of Chinese Universities, 2019, 40 (8): 1784- 1792.
23 徐分芳. 基于樟脑磺酸诱导手性聚苯胺/铁氧体复合物的制备、表征及吸波性能研究[D]. 重庆: 重庆大学, 2014.
23 XU F F. Preparation, characterization and microwave absorbing properties of composite of ferrites/chiral polyaniline induced by chiral camphor sulfonic acid[D]. Chongqing: Chongqing University, 2014.
24 丁晓新, 王明召. 聚苯胺的结构及导电原理[J]. 化学教学, 2013, (2): 76- 77.
doi: 10.3969/j.issn.1005-6629.2013.02.029
24 DING X X , WANG M Z . The structure and conductive principle of polyaniline[J]. Education in Chemistry, 2013, (2): 76- 77.
doi: 10.3969/j.issn.1005-6629.2013.02.029
25 柯一礼. 导电聚苯胺的研究及其应用前景[J]. 建材世界, 2009, 30 (5): 8- 11.
doi: 10.3963/j.issn.1674-6066.2009.05.003
25 KE Y L . Progress in research and application prospects of conducting polyaniline[J]. The World of Building Materials, 2009, 30 (5): 8- 11.
doi: 10.3963/j.issn.1674-6066.2009.05.003
26 姜宇, 陈卓明, 辛斌杰, 等. 聚苯胺基导电功能性织物研究进展[J]. 现代纺织技术, 2019, 27 (4): 58- 64.
26 JIANG Y , CHEN Z M , XIN B J , et al. Research progress of polyaniline-based conductive functional fabrics[J]. Advanced Textile Technology, 2019, 27 (4): 58- 64.
27 HOU J Q , ZHANG L , QIU H , et al. Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres[J]. Journal of Materials Science, 2017, 28 (13): 9279- 9288.
28 GHZAIEL T B , DHAOUI W , PASKO A , et al. Optimization of multiroute synthesis for polyaniline-barium ferrite composites[J]. Materials Chemistry and Physics, 2016, 179, 42- 54.
doi: 10.1016/j.matchemphys.2016.05.008
29 GHZAIEL T B , DHAOUI W , SCHOENSTEIN F , et al. Substitution effect of Me=Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves[J]. Journal of Alloys and Compounds, 2017, 692, 774- 786.
doi: 10.1016/j.jallcom.2016.09.075
30 ZUO Y , YAO Z , LIN H , et al. Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties[J]. Journal of Alloys and Compounds, 2018, 746, 496- 502.
doi: 10.1016/j.jallcom.2018.02.324
31 刘政, 何山, 黄大庆. 吸收剂复合改性对材料电磁性能的影响[J]. 航空材料学报, 2018, 38 (6): 77- 82.
31 LIU Z , HE S , HUANG D Q . Influence of composite absorbent modification on electromagnetic properties[J]. Journal of Aeronautical Materials, 2018, 38 (6): 77- 82.
32 王海花, 罗璐, 李小瑞, 等. 聚苯胺/四氧化三铁吸波材料的制备与性能[J]. 精细化工, 2017, 34 (9): 988- 995.
32 WANG H H , LUO L , LI X R , et al. Preparation and properties of polyaniline/Fe3O4 absorbing materials[J]. Fine Chemicals, 2017, 34 (9): 988- 995.
33 裴锋, 胡孝涛, 田旭, 等. 聚苯胺接枝石墨的制备及性能测试[J]. 表面技术, 2016, 45 (9): 228- 232.
33 PEI F , HU X T , TIAN X , et al. Preparation and properties of polyaniline grafted onto graphite[J]. Surface Technology, 2016, 45 (9): 228- 232.
34 LIU T S , LIU N , ZHAI S R , et al. Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance[J]. Journal of Alloys and Compounds, 2019, 779, 831- 849.
doi: 10.1016/j.jallcom.2018.11.167
35 何煜. Ce2Co17基体系合金制备及吸波性能研究[D]. 桂林: 桂林电子科技大学, 2019.
35 HE Y. Preparation and microwave absorbing properties of Ce2Co17 based alloy[D]. Guilin: Guilin University of Electronic Technology, 2019.
36 杨伟, 金华标, 魏柳新, 等. 船用VHF频段选择性吸波技术研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40 (2): 357- 364.
36 YANG W , JIN H B , WEI L X , et al. Study on selective absorbing technology for marine VHF band[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40 (2): 357- 364.
37 LUO J H , SHEN P , YAO W , et al. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites[J]. Nano-scale Research Letters, 2016, 11, 141.
doi: 10.1186/s11671-016-1340-x
38 LEI Y M , YAO Z J , LIN H Y , et al. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites[J]. Materials Letters, 2019, 236, 456- 459.
doi: 10.1016/j.matlet.2018.10.158
39 LEI Y M , YAO Z J , LIN H Y , et al. The effect of polymerization temperature andreaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites[J]. RSC Advances, 2018, 8, 29344- 29355.
40 HE L , WANG J H , ZHAO Y C , et al. (00h) BaM filled core-shell Co2Y@PANI ferrite-polymer composite for enhanced microwave absorption performances[J]. Materials Chemistry and Physics, 2018, 219, 390- 398.
41 杨君宇. 对尖晶石Mn1-xIrxCo2O4氧化物结构与磁性的研究[D]. 呼和浩特: 内蒙古大学, 2019.
41 YANG J Y. Study on the structure and magnetism of spinel Mn1-xIrxCo2O4 oxide[D]. Hohhot: Inner Mongolia University, 2019.
42 WANG Y , WANG W , ZHU M F , et al. Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@PANI nanoparticles[J]. RSC Advances, 2017, 7 (68): 42891- 42899.
43 CHEN X L , QI S H . Preparation and microwave absorbing properties of polyaniline/NiFe2O4/graphite nanosheet composites via sol-gel reaction and in situ polymerization[J]. Journal of Sol-gel Science and Technology, 2017, 81 (3): 824- 830.
44 LI D G , CHEN C , RAO W , et al. Preparation and microwave absorption properties of polyaniline/Mn0.8Zn0.2Fe2O4 nanocomposite in 2-18 GHz[J]. Journal of Materials Science, 2014, 25 (1): 76- 81.
45 ALI N N , ATASSI Y , SALLOUM A , et al. Comparative study of microwave absorption characteristics of (polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages[J]. Materials Chemistry and Physics, 2018, 211, 79- 87.
46 BAYRAKDAR H . Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites[J]. Journal of Alloys and Compounds, 2016, 674, 185- 188.
47 BAI D Z , FENG H X , CHEN N L , et al. Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites[J]. Journal of Magnetism and Magnetic Materials, 2018, 457, 75- 82.
48 XU F F , MA L , GAN M Y , et al. Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties[J]. Journal of Alloys and Compounds, 2014, 593, 24- 29.
49 LIU J L , ZHANG J , LI Y Q , et al. Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness[J]. Materials Chemistry and Physics, 2015, 163, 470- 477.
50 QIU H , LUO X , WANG J , et al. Synthesis and characterization of ternary polyaniline/barium ferrite/reduced graphene oxide composite as microwave-absorbing material[J]. Journal of Electronic Materials, 2019, 48 (7): 4400- 4408.
51 WANG M Q , LIN Y , LIU Y R , et al. Core-shell structure BaFe12O19@PANI composites with thin matching thickness and effective microwave absorption properties[J]. Journal of Materials Science, 2019, 30 (15): 14344- 14354.
52 蒲志勇. S/C波段环行器用石榴石铁氧体制备及应用研究[D]. 成都: 电子科技大学, 2018.
52 PU Z Y. Study on garnet ferrite's preparation andapplication in S/C band circulator[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
53 SHARMA V , SAHA J , PATNAIK S , et al. YIG based broad band microwave absorber: a perspective on synthesis methods[J]. Journal of Magnetism and Magnetic Materials, 2017, 439, 277- 286.
54 XIE P T , FAN R H , ZHANG Z D , et al. Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region[J]. Journal of Materials Science, 2018, 29, 6119- 6124.
55 LIN Y , LIU X , YE T , et al. Synthesis and characterization of CoFe2O4/Y3Fe5O12 composites based on polyaniline[J]. Journal of Materials Science, 2016, 27, 4833- 4838.
56 YANG H B , YE T , LIN Y , et al. Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline[J]. Synthetic Metals, 2015, 210, 245- 250.
[1] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[2] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[3] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[4] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[5] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[6] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[7] 高晔, 姜卓钰, 周怡然, 吕晓旭, 宋伟, 焦健. 正交铺层PIP-SiCf/SiC复合材料的水淬失效行为[J]. 材料工程, 2022, 50(3): 166-172.
[8] 白龙腾, 成来飞, 杨晓辉, 曹晶, 王毅. 双组元液体动力环境下3D C/SiC复合材料喷管烧蚀性能[J]. 材料工程, 2022, 50(2): 118-126.
[9] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[10] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[11] 于长清, 余悠然, 赵英民, 谢宁. 石墨热压还原Cu/Cu2O金属陶瓷电导逾渗行为与微观结构分形表征[J]. 材料工程, 2022, 50(1): 154-160.
[12] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[13] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[14] 唐闻远, 许英杰, 孙勇毅, 张卫红, 惠新育. 基于温度曲线优化的复合材料热压罐固化时间与固化质量协同控制[J]. 材料工程, 2021, 49(9): 142-150.
[15] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn