Researth progress in preparation of ferrite/polyaniline absorbing composites by in situ polymerization
Yongtao YU1, Yuanjun LIU1,2,3,4,*()
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China 2 Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China 3 Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tiangong University, Tianjin 300387, China 4 Loftex Industries Co., Ltd., Binzhou 256600, Shandong, China
Electromagnetic (EM) pollution has become the fourth largest pollution after air pollution, water pollution and noise pollution. Using of EM absorbing materials is an effective way to solve electromagnetic pollution problem, due to their absorption and attenuation characteristics. Polyaniline (PANI), as a kind of resistance loss absorbing material, can meet the development concept of "thin thickness" and "light mass" of absorbing materials. However, its absorbing performance is not ideal due to its poor impedance matching, ferrite, as a kind of traditional magnetic loss-type absorbing material, is limited in its application range due to its high density. The high-density ferrite and low-density polyaniline composite wave-absorbing material can not only adjust the density of the composite material, but also improve the impedance matching, and the wave-absorbing performance of the ferrite/polyaniline composite. In this paper, the preparation methods of polyaniline and ferrite/polyaniline composites were discussed firstly. Secondly, the absorbing mechanism of ferrite/polyaniline composites was expounded. Then, the research progress of composite materials prepared by spinel type, magnetic lead type, garnet type ferrite and polyaniline in the field of wave absorption was summarized, respectively. Finally, the future development directions of ferrite/polyaniline composites were pointed that they should tend to electromagnetic simulation and multi-element composites.
LIU Y J , ZHAO X M , TUO X . The research of EM wave absorbing properties of ferrite/silicon carbide/graphite three-layer composite coating knitted fabrics[J]. Journal of the Textile Institute, 2016, 107 (4): 483- 492.
doi: 10.1080/00405000.2015.1045252
HUANG J G , GU Y , ZHAO Z Y , et al. Absorbing mechanism of ferrite magnetic materials and the research progress in improving the wave absorbing property[J]. Journal of Materials Engineering, 2019, 47 (6): 77- 81.
HU Y , HUANG D Q , SHI Y Q , et al. Research progress of high temperature microwave-absorbing ceramic matrix composites[J]. Journal of Aeronautical Materials, 2019, 39 (5): 1- 12.
4
LIU Y J , ZHAO X M , TUO X . Study of graphite/silicon carbide coating of plain woven fabric for electrical megawatt absorbing properties[J]. Journal of the Textile Institute, 2017, 108 (4): 483- 488.
doi: 10.1080/00405000.2016.1171036
5
LIU Y J , ZHAO X M . Experimental studies on the dielectric behaviour of polyester woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2016, 24 (3): 67- 71.
LIU Y J , LIU G Y , ZHAO X M . The discussion on the microwave absorbing properties of the polypyrrole/polyester fiber composite material[J]. Materials Science & Technology, 2017, 25 (4): 31- 37.
YU Y T , WANG C X , LIU Y J , et al. Research progress of wave absorbing composites[J]. Journal of Silk, 2020, 57 (4): 11- 16.
doi: 10.3969/j.issn.1001-7003.2020.04.003
YU Y T , LIU Y J , ZHAO X M . Research progress of graphene-contained conductive wave-absorbing composites[J]. Journal of Silk, 2019, 56 (12): 50- 58.
doi: 10.3969/j.issn.1001-7003.2019.12.008
9
QUAN B , LIANG X H , ZHANG X , et al. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness[J]. ACS Applied Materials & Interfaces, 2018, 10 (48): 41535- 41543.
10
YUAN H R , ZHANG X , YAN F , et al. Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials[J]. Carbon, 2018, 140, 368- 376.
doi: 10.1016/j.carbon.2018.08.073
11
HAN S J , WANG S Y , LI W H , et al. Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance[J]. Ceramics International, 2018, 44 (9): 10352- 10361.
doi: 10.1016/j.ceramint.2018.03.046
12
LI J , BI S , MEI B , et al. Effects of three-dimensional reduced graphene oxide coupled with nickel nanoparticles on the microwave absorption of carbon fiber based composites[J]. Journal of Alloys and Compounds, 2017, 717, 205- 213.
doi: 10.1016/j.jallcom.2017.03.098
13
LIU Y J , LIU B C , ZHAO X M . The influence of the type and concentration of oxidants on the dielectric constant of the polypyrrole-coated plain woven cotton fabric[J]. Journal of the Textile Institute, 2018, 109 (9): 1127- 1132.
doi: 10.1080/00405000.2017.1414668
14
LIU Y J , LIU Y C , ZHAO X M . The influence of pyrrole concentration on the dielectric properties of polypyrrole composite material[J]. Journal of the Textile Institute, 2017, 108 (7): 1246- 1249.
LIU Y J , ZHAO X M , LIANG T L . Research on the dielectric properties of the polyaniline composite material[J]. Materials Review, 2016, 30 (28): 304- 307.
YU Y T , LIU Y J , GUO S D , et al. Influence of reaction temperature on electromagnetic properties of modified Fe3O4/polyaniline polyester-cotton composites[J]. Basic Sciences Journal of Textile Universities, 2021, 34 (2): 14- 20.
17
LIU Y J , ZHAO X M . The influence of dopant type and dosage on the dielectric properties of polyaniline/nylon composites[J]. Journal of the Textile Institute, 2017, 108 (9): 1628- 1633.
doi: 10.1080/00405000.2016.1271575
18
MENG X F , HAN Q X , SUN Y J , et al. Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite[J]. Ceramics International, 2019, 45, 2504- 2508.
doi: 10.1016/j.ceramint.2018.10.179
YU Y T. Preparation and electromagnetic properties of modified Fe3O4/polyaniline poly-cotton coated fabric[D]. Tianjin: Tiangong University, 2021.
20
GHOLAMPOUR , MANDI , MOVASSAGH-ALANAGH , et al. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method[J]. Solid State Sciences, 2017, 64, 51- 61.
doi: 10.1016/j.solidstatesciences.2016.12.005
21
GUO F Y , ZI W W , JI G J , et al. Polyaniline containing W-type hexaferrite composites for microwave absorption in high-frequency applications[J]. Journal of Polymer Research, 2015, 22 (4): 1- 9.
LI Z , WANG J J , GAO H T , et al. Fabrication and microwave absorption mechanism of PCIP/COFe2O4/PANI composites[J]. Chemical Journal of Chinese Universities, 2019, 40 (8): 1784- 1792.
XU F F. Preparation, characterization and microwave absorbing properties of composite of ferrites/chiral polyaniline induced by chiral camphor sulfonic acid[D]. Chongqing: Chongqing University, 2014.
DING X X , WANG M Z . The structure and conductive principle of polyaniline[J]. Education in Chemistry, 2013, (2): 76- 77.
doi: 10.3969/j.issn.1005-6629.2013.02.029
KE Y L . Progress in research and application prospects of conducting polyaniline[J]. The World of Building Materials, 2009, 30 (5): 8- 11.
doi: 10.3963/j.issn.1674-6066.2009.05.003
JIANG Y , CHEN Z M , XIN B J , et al. Research progress of polyaniline-based conductive functional fabrics[J]. Advanced Textile Technology, 2019, 27 (4): 58- 64.
27
HOU J Q , ZHANG L , QIU H , et al. Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres[J]. Journal of Materials Science, 2017, 28 (13): 9279- 9288.
28
GHZAIEL T B , DHAOUI W , PASKO A , et al. Optimization of multiroute synthesis for polyaniline-barium ferrite composites[J]. Materials Chemistry and Physics, 2016, 179, 42- 54.
doi: 10.1016/j.matchemphys.2016.05.008
29
GHZAIEL T B , DHAOUI W , SCHOENSTEIN F , et al. Substitution effect of Me=Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves[J]. Journal of Alloys and Compounds, 2017, 692, 774- 786.
doi: 10.1016/j.jallcom.2016.09.075
30
ZUO Y , YAO Z , LIN H , et al. Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties[J]. Journal of Alloys and Compounds, 2018, 746, 496- 502.
doi: 10.1016/j.jallcom.2018.02.324
LIU Z , HE S , HUANG D Q . Influence of composite absorbent modification on electromagnetic properties[J]. Journal of Aeronautical Materials, 2018, 38 (6): 77- 82.
PEI F , HU X T , TIAN X , et al. Preparation and properties of polyaniline grafted onto graphite[J]. Surface Technology, 2016, 45 (9): 228- 232.
34
LIU T S , LIU N , ZHAI S R , et al. Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance[J]. Journal of Alloys and Compounds, 2019, 779, 831- 849.
doi: 10.1016/j.jallcom.2018.11.167
35
何煜. Ce2Co17基体系合金制备及吸波性能研究[D]. 桂林: 桂林电子科技大学, 2019.
35
HE Y. Preparation and microwave absorbing properties of Ce2Co17 based alloy[D]. Guilin: Guilin University of Electronic Technology, 2019.
YANG W , JIN H B , WEI L X , et al. Study on selective absorbing technology for marine VHF band[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40 (2): 357- 364.
37
LUO J H , SHEN P , YAO W , et al. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites[J]. Nano-scale Research Letters, 2016, 11, 141.
doi: 10.1186/s11671-016-1340-x
38
LEI Y M , YAO Z J , LIN H Y , et al. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites[J]. Materials Letters, 2019, 236, 456- 459.
doi: 10.1016/j.matlet.2018.10.158
39
LEI Y M , YAO Z J , LIN H Y , et al. The effect of polymerization temperature andreaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites[J]. RSC Advances, 2018, 8, 29344- 29355.
40
HE L , WANG J H , ZHAO Y C , et al. (00h) BaM filled core-shell Co2Y@PANI ferrite-polymer composite for enhanced microwave absorption performances[J]. Materials Chemistry and Physics, 2018, 219, 390- 398.
YANG J Y. Study on the structure and magnetism of spinel Mn1-xIrxCo2O4 oxide[D]. Hohhot: Inner Mongolia University, 2019.
42
WANG Y , WANG W , ZHU M F , et al. Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@PANI nanoparticles[J]. RSC Advances, 2017, 7 (68): 42891- 42899.
43
CHEN X L , QI S H . Preparation and microwave absorbing properties of polyaniline/NiFe2O4/graphite nanosheet composites via sol-gel reaction and in situ polymerization[J]. Journal of Sol-gel Science and Technology, 2017, 81 (3): 824- 830.
44
LI D G , CHEN C , RAO W , et al. Preparation and microwave absorption properties of polyaniline/Mn0.8Zn0.2Fe2O4 nanocomposite in 2-18 GHz[J]. Journal of Materials Science, 2014, 25 (1): 76- 81.
45
ALI N N , ATASSI Y , SALLOUM A , et al. Comparative study of microwave absorption characteristics of (polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages[J]. Materials Chemistry and Physics, 2018, 211, 79- 87.
46
BAYRAKDAR H . Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites[J]. Journal of Alloys and Compounds, 2016, 674, 185- 188.
47
BAI D Z , FENG H X , CHEN N L , et al. Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites[J]. Journal of Magnetism and Magnetic Materials, 2018, 457, 75- 82.
48
XU F F , MA L , GAN M Y , et al. Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties[J]. Journal of Alloys and Compounds, 2014, 593, 24- 29.
49
LIU J L , ZHANG J , LI Y Q , et al. Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness[J]. Materials Chemistry and Physics, 2015, 163, 470- 477.
50
QIU H , LUO X , WANG J , et al. Synthesis and characterization of ternary polyaniline/barium ferrite/reduced graphene oxide composite as microwave-absorbing material[J]. Journal of Electronic Materials, 2019, 48 (7): 4400- 4408.
51
WANG M Q , LIN Y , LIU Y R , et al. Core-shell structure BaFe12O19@PANI composites with thin matching thickness and effective microwave absorption properties[J]. Journal of Materials Science, 2019, 30 (15): 14344- 14354.
52
蒲志勇. S/C波段环行器用石榴石铁氧体制备及应用研究[D]. 成都: 电子科技大学, 2018.
52
PU Z Y. Study on garnet ferrite's preparation andapplication in S/C band circulator[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
53
SHARMA V , SAHA J , PATNAIK S , et al. YIG based broad band microwave absorber: a perspective on synthesis methods[J]. Journal of Magnetism and Magnetic Materials, 2017, 439, 277- 286.
54
XIE P T , FAN R H , ZHANG Z D , et al. Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region[J]. Journal of Materials Science, 2018, 29, 6119- 6124.
55
LIN Y , LIU X , YE T , et al. Synthesis and characterization of CoFe2O4/Y3Fe5O12 composites based on polyaniline[J]. Journal of Materials Science, 2016, 27, 4833- 4838.
56
YANG H B , YE T , LIN Y , et al. Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline[J]. Synthetic Metals, 2015, 210, 245- 250.