Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 139-146    DOI: 10.11868/j.issn.1001-4381.2021.000342
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三向正交预制体织造参数对C/C复合材料性能的影响
邓奇林, 杨敏(), 姚彧敏, 李红, 任慕苏, 孙晋良
上海大学 复合材料研究中心, 上海 200444
Effect of three-directional orthogonal preform weaving parameters on properties of C/C composites
Qilin DENG, Min YANG(), Yumin YAO, Hong LI, Musu REN, Jinliang SUN
Composite Research Center of Shanghai University, Shanghai 200444, China
全文: PDF(15055 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

Z向间距不同的三向正交结构预制体为研究对象,采用化学气相渗透和浸渍树脂相结合的工艺制备碳/碳(C/C)复合材料,研究织造参数对C/C复合材料微观结构和弯曲性能的影响。以三向正交预制体最小的重复结构为单元建立计算模型,获得三向正交预制体纤维含量与织造参数的关系式并进行验证,结果表明:Z向纤维间距及XY向纤维层间距越小,预制体纤维含量越高;Z向纤维间距越大,纤维交织处扭曲变形大,预制体孔隙结构发生变化;相同致密化工艺下,孔隙结构的变化影响C/C复合材料中基体碳的组成和分布,对基体碳形貌无影响;XY向纤维含量越高,Z向纤维间距越小,致密后的C/C复合材料弯曲强度越高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓奇林
杨敏
姚彧敏
李红
任慕苏
孙晋良
关键词 三向正交预制体织造参数纤维含量微观形貌弯曲性能    
Abstract

Taking the three-directional orthogonal preform with different Z-direction fiber distance as the research object, the carbon/carbon (C/C) composites were prepared by the combination of chemical vapor infiltration and resin impregnation, and the effect of weaving parameters on the microstructure and bending performance of C/C composites were studied. The calculation model was established by taking the smallest repeated structure of three-directional orthogonal preform as a unit, and the relationship between fiber content and weaving parameters of three-directional preform was obtained and verified. The results show that the fiber content of preform is increased with the decrease of Z-direction fiber distance and X, Y-direction fiber layer distance; when the Z-direction fiber distance is increased, the twist deformation of the fiber interweave becomes larger, resulting in the change of the pore structure of the preform; under the same densification process, the change of pore structure affects the composition and distribution of carbon matrix in C/C composites, but has no effect on the morphology of carbon matrix; when the fiber content in X, Y-direction is increased and the distance between fibers in Z-direction is decreased, the flexural strength of the C/C composites is higher.

Key wordsthree-directional orthogonal preform    weaving parameter    fiber content    micro-morphology    bending property
收稿日期: 2021-04-14      出版日期: 2022-05-23
中图分类号:  TB332  
基金资助:科技委基础加强项目(2017-JCJQ-ZD-035);上海市教育发展基金会和上海市教育委员会"曙光计划"(18SG34)
通讯作者: 杨敏     E-mail: ym2008@shu.edu.cn
作者简介: 杨敏(1983—), 女, 副研究员, 博士, 从事碳基复合材料的研究, 联系地址: 上海市宝山区上大路99号上海大学113信箱复合材料研究中心(200444), E-mail: ym2008@shu.edu.cn
引用本文:   
邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
Qilin DENG, Min YANG, Yumin YAO, Hong LI, Musu REN, Jinliang SUN. Effect of three-directional orthogonal preform weaving parameters on properties of C/C composites. Journal of Materials Engineering, 2022, 50(5): 139-146.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000342      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/139
Sample X, Y-direction fiber Z-direction fiber Z-direction fiber center distance/mm X, Y-direction fiber layer distance/mm Density/ (g·cm-3)
Y1 1×6 K 2×6 K 2.0 0.30 0.9
Y2 1×6 K 2×6 K 2.4 0.25 0.8
Y3 2×3 K 4×6 K 4.8 0.31 0.7
Table 1  Y1, Y2, Y3预制体织造参数
Fig.1  三向正交预制体示意图
Fig.2  三向正交预制体单元体示意图
Sample VFX/% VFY/% VFZ/% VF/%
Y1 18.9 18.9 11.4 49.2
Y2 18.9 18.9 7.8 45.6
Y3 15.3 15.3 7.8 38.4
Table 2  三种预制体纤维体积分数的计算值
Fig.3  不同预制体增强C/C复合材料显微图
(a)Y1样品;(b)Y2样品;(c)Y3样品
Sample Designed value/mm Measured value/mm
Y1 2.0 1.9
Y2 2.4 2.3
Y3 4.8 3.0-4.6
Table 3  三种预制体结构C/C复合材料Z向纤维中心距离实测值和设计值
Fig.4  三种预制体结构的孔隙结构示意图
(a)Y1, Y2样品;(b)Y3样品
Fig.5  三种预制体结构C/C复合材料微观形貌
(a)XY向纤维束;(b)Z向纤维束;(c)XYZ向纤维束包裹;(1)Y1;(2)Y2;(3)Y3
Fig.6  Y3预制体结构C/C复合材料Z向纤维未填充处微观形貌
Sample nCF/% nPyC/% nRC/% Density/ (g·cm-3)
Y1 51.1 28.0 15.8 1.86
Y2 46.1 32.5 16.1 1.85
Y3 39.8 37.5 16.6 1.86
Table 4  三种预制体结构C/C复合材料的组成和密度
Fig.7  三种预制体结构C/C复合材料弯曲强度图
Fig.8  三种预制体结构C/C复合材料弯曲应力-应变曲线
Fig.9  三种预制体结构C/C复合材料弯曲试样断裂后宏观形貌
Fig.10  三种预制体结构C/C复合材料弯曲试样断口形貌
(a)Y1样品;(b)Y2样品;(c)Y3样品
Fig.11  弯曲断裂过程示意图
(a)屈曲变形;(b)裂纹扩展;(c)断裂失效
1 黄启忠. 高性能炭/炭复合材料的制备、结构与应用[M]. 长沙: 中南大学出版社, 2010: 10- 18.
1 HUANG Q Z . Fabrication, structure and application of high performance carbon/carbon composites[M]. Changsha: Central South University Press, 2010: 10- 18.
2 庞生洋, 王佩瑶, 胡成龙, 等. 碳纤维预制体结构对C/C复合材料及其螺栓力学性能的影响[J]. 无机材料学报, 2019, 34 (12): 1272- 1278.
2 PANG S Y , WANG P Y , HU C L , et al. Carbon fiber preform's structure on mechanical property of C/C composites and bolts[J]. Journal of Inorganic Materials, 2019, 34 (12): 1272- 1278.
3 KOWBEL W , HSU T K . Mechanical behavior of carbon-carbon composites made with cold plasma-treated carbon fibers[J]. Composites, 1995, 26 (11): 791- 797.
doi: 10.1016/0010-4361(95)98200-5
4 DELHAES P . Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon, 2002, 40 (5): 641- 657.
doi: 10.1016/S0008-6223(01)00195-6
5 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018, 38 (2): 86- 95.
5 SUN L , WANG C , LI X F , et al. Research progress of C/C composite preforms[J]. Journal of Aeronautical Materials, 2018, 38 (2): 86- 95.
6 魏连锋, 崔红, 嵇阿琳, 等. 预制体结构对三维编织C/C复合材料本征性能影响研究[J]. 炭素, 2017, (1): 5- 9.
6 WEI L F , CUI H , JI A L , et al. Effect of preform structure on mechanical properties of three-dimensional braided C/C composites[J]. Carbon, 2017, (1): 5- 9.
7 高金花, 李炜. 三维纺织结构增强复合材料的几何模型[J]. 纤维复合材料, 2006, 23 (4): 31- 35.
doi: 10.3969/j.issn.1003-6423.2006.04.009
7 GAO J H , LI W . Geometric model of three-dimensional textile reinforced composites[J]. Fiber Composites, 2006, 23 (4): 31- 35.
doi: 10.3969/j.issn.1003-6423.2006.04.009
8 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48 (8): 62- 72.
8 CHEN L , JIAO W , WANG X M , et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering, 2020, 48 (8): 62- 72.
9 杨彩云, 胡振英, 周红英, 等. 三维机织预制体结构对C/C复合材料力学性能的影响[J]. 材料工程, 2009, (9): 29- 32.
9 YANG C Y , HU Z Y , ZHOU H Y , et al. Influence of 3D woven preform architectures on mechanical properties of C/C composites[J]. Journal of Materials Engineering, 2009, (9): 29- 32.
10 刘云志, 单忠德, 战丽, 等. 柔性导向三维正交结构复合材料预制体建模研究[J]. 工程塑料应用, 2016, 44 (6): 63- 66.
10 LIU Y Z , SHAN Z D , ZHAN L , et al. Research on modeling of 3D orthogonal flexible composite preform[J]. Engineering Plastics Applications, 2016, 44 (6): 63- 66.
11 郭兴峰, 黄故, 王瑞, 等. 三维正交机织物结构的几何模型[J]. 复合材料学报, 2005, 22 (4): 183- 187.
11 GUO X F , HUANG G , WANG R , et al. Geometric model of three-dimensional orthogonal woven fabric structures[J]. Acta Materiae Compositae Sinica, 2005, 22 (4): 183- 187.
12 LEE L , RUDOV CLARK S . Effect of weaving damage on the tensile properties of three-dimensional woven composites[J]. Composite Structures, 2002, 57 (4): 405- 413.
13 COX B N , DASKHAH M S . Failure mechanisms of 3D woven composite in tension, compression and bending[J]. Acta Metallurgica et Materialia, 1994, 42 (12): 3967- 3984.
doi: 10.1016/0956-7151(94)90174-0
14 马莹, 何田田, 陈翔, 等. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41 (7): 59- 66.
14 MA Y , HE T T , CHEN X , et al. Micro-geometry modeling of three-dimensional orthogonal fabric based on digital element approach[J]. Acta Textile Sinica, 2020, 41 (7): 59- 66.
15 苗馨匀, 顾伯洪, 郑天勇, 等. 三维正交机织物组织结构的几何表征和数学表征[J]. 纤维复合材料, 2009, 26 (4): 38- 42.
15 MIAO X Y , GU B H , ZHENG T Y , et al. Geometrical and mathematical characterization of 3D orthogonal woven fabric architecture[J]. Fiber Composites, 2009, 26 (4): 38- 42.
16 冯景鹏, 余欢, 徐志锋, 等. 叠层穿刺结构Cf/Al复合材料的弯曲性能及失效分析[J]. 中国有色金属学报, 2020, 30 (11): 2597- 2604.
16 FENG J P , YU H , XU Z F , et al. Bending properties and failure analysis of laminated puncture structural of Cf/Al composites[J]. Chinese Journal of Nonferrous Metals, 2020, 30 (11): 2597- 2604.
17 申晓, 刘向东, 田伟, 等. 正交-准正交复合三维机织复合材料力学性能[J]. 现代纺织技术, 2019, 27 (2): 6- 11.
17 SHEN X , LIU X D , TIAN W , et al. Study on mechanical properties of orthogonal and quasi-orthogonal 3D woven composites with combined structure[J]. Modern Textile Technology, 2019, 27 (2): 6- 11.
18 马亚运, 高晓平. 三维正交机织复合材料拉伸性能研究[J]. 上海纺织科技, 2017, 45 (2): 5- 7.
18 MA Y Y , GAO X P . Tensile property of 3D orthogonal woven composite materials[J]. Shanghai Textile Science and Technology, 2017, 45 (2): 5- 7.
[1] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[4] 张浩, 李海丽. 复合乳化剂作用下相变调湿复合材料的性能和机理[J]. 材料工程, 2019, 47(12): 157-162.
[5] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[6] 张林, 陈多礼, 朱旻昊, 蔡振兵, 彭金方. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3): 7-12.
[7] 马少华, 费昺强, 许良, 回丽. 热氧老化对碳纤维双马树脂基复合材料性能的影响[J]. 材料工程, 2017, 45(12): 50-57.
[8] 曹同坤, 孙何, 王晓明. 采用端面带孔电极进行电火花沉积制备自润滑涂层[J]. 材料工程, 2017, 45(10): 88-94.
[9] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[10] 马李, 何录菊, 邵先亦, 王古平, 张梦贤. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1): 89-95.
[11] 赵健闯, 胡建东, 孟繁有, 王耀民. TiBCN陶瓷线切割加工表面质量及蚀除机理[J]. 材料工程, 2015, 43(7): 21-25.
[12] 李翠玉, 罗岳文, 贾静艳, 冯亚男, 杨雪. 不同结构UHMWPE纤维纬编针织复合材料弯曲性能[J]. 材料工程, 2015, 43(11): 84-90.
[13] 王玲玲, 马文闵, 嵇阿琳, 崔红, 闫联生, 黄剑. C/C多孔体对C/C-SiC复合材料制备及性能的影响[J]. 材料工程, 2014, 0(7): 34-38.
[14] 余强, 陈阵, 范莹莹, 魏昶, 梁美艳, 文大楷. 纳米二氧化锆对制备PbO2-CeO2-ZrO2复合阳极材料的影响[J]. 材料工程, 2014, 0(5): 40-45.
[15] 刘晓丽, 鹿海军, 邢丽英. 双马来酰亚胺泡沫的微观形貌与结构控制研究[J]. 材料工程, 2012, 0(8): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn