Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (5): 156-165    DOI: 10.11868/j.issn.1001-4381.2021.000444
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
退火态激光选区熔化成形AlSi10Mg合金组织与力学性能
梁恩泉1,*(), 代宇2, 白静3, 周亚雄3, 彭东剑3, 王清正2, 康楠2,*(), 林鑫2,*()
1 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210
2 西北工业大学 凝固技术国家重点实验室, 西安 710072
3 西安航天发动机有限公司, 西安 710000
Microstructure and mechanical property of annealing heat treated AlSi10Mg alloy fabricated by selective laser melting
Enquan LIANG1,*(), Yu DAI2, Jing BAI3, Yaxiong ZHOU3, Dongjian PENG3, Qingzheng WANG2, Nan KANG2,*(), Xin LIN2,*()
1 COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
3 Xi'an Space Engine Company Limited, Xi'an 710000, China
全文: PDF(38811 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

AlSi10Mg合金具有高比强度、高耐磨性等优良特点。由于其成分接近共晶点,成形性能良好,被广泛应用于激光选区熔化技术。然而其热处理制度仍然沿用传统铸态合金的热处理规范,影响了其性能的充分发挥。本工作采用激光选区熔化技术制备了AlSi10Mg合金,并研究了沉积态和后续热处理过程中组织演化规律及其对室温力学性能的影响机制。研究发现:沉积态组织由沿沉积方向生长的α-Al柱状枝晶及枝晶间网状Al-Si共晶组成,具有强烈的〈100〉方向织构,沉积层由三部分组成,分别是细晶区、粗晶区及热影响区,抗拉强度389.5 MPa,伸长率4%。退火过程中,共晶Si破碎、球化,基体中过饱和Si不断析出长大。当退火温度从200 ℃提高到500 ℃时,Si颗粒发生Ostwald熟化,平均尺寸增长了23倍。经过300 ℃和500 ℃退火处理后,试样抗拉强度分别为287.0 MPa和268.0 MPa,但伸长率分别提高到10.3%和17.2%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁恩泉
代宇
白静
周亚雄
彭东剑
王清正
康楠
林鑫
关键词 激光选区熔化增材制造AlSi10Mg合金热处理组织演化    
Abstract

AlSi10Mg alloy has excellent characteristics such as high specific strength and good wear resistance. The composition of AlSi10Mg alloy is close to the eutectic point, thus it has good forming property and has been widely used in selective laser melting processing. However, for this moment, only the conventional annealing strategy is employed in the selective laser melted AlSi10Mg component, which greatly limits their further applications. In this work, the effects of several annealing on the microstructure and tensile properties of selective laser melted AlSi10Mg alloys were investigated. The results show that the as-fabricated sample presents a mixed structure of columnar α-Al and eutectic Al-Si structure along building direction, which possesses a strong texture of α-Al 〈100〉. The single molten pool consists of fine grain region, coarse grain region and heat affected region. The as-fabricated sample shows ultimate strength of 389.5 MPa with 4% elongation to failure. During the heat treatment, the eutectic Si is broken and spheroidized along with precipitation of supersaturated Al(Si). When the annealing temperature increases from 200 ℃ to 500 ℃, the silicon particle suffers the Ostwald ripening for size increase of 23 times. The samples heat treated at 300 ℃ and 500 ℃ show the ultimate strength of 287.0 MPa and 268.0 MPa, and elongation of 10.3% and 17.2%, respectively.

Key wordsselective laser melting    additive manufacturing    AlSi10Mg alloy    heat treatment    microstructural evolution
收稿日期: 2021-05-10      出版日期: 2022-05-23
中图分类号:  TG146.2  
基金资助:国家重点研发计划(2016YFB1100100);国家自然科学基金项目(52005411)
通讯作者: 梁恩泉,康楠,林鑫     E-mail: liangenquan@comac.cc;nan.kang@nwpu.edu.cn;xlin@nwpu.edu.cn
作者简介: 林鑫(1973—),男,教授,博士,主要研究方向为增材制造与创新设计、精确凝固理论与技术,联系地址:陕西省西安市友谊西路127号西北工业大学友谊校区凝固技术国家重点实验室(710072),E-mail: xlin@nwpu.edu.cn
康楠(1988—),男,副教授,博士,主要从事金属增材制造研究,联系地址:陕西省西安市友谊西路127号西北工业大学友谊校区凝固技术国家重点实验室(710072),E-mail: nan.kang@nwpu.edu.cn
梁恩泉(1985—),男,高级工程师,硕士,主要从事航空材料增材制造研究,联系地址:中国商用飞机有限责任公司上海飞机设计研究院(201210),E-mail: liangenquan@comac.cc
引用本文:   
梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
Enquan LIANG, Yu DAI, Jing BAI, Yaxiong ZHOU, Dongjian PENG, Qingzheng WANG, Nan KANG, Xin LIN. Microstructure and mechanical property of annealing heat treated AlSi10Mg alloy fabricated by selective laser melting. Journal of Materials Engineering, 2022, 50(5): 156-165.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000444      或      http://jme.biam.ac.cn/CN/Y2022/V50/I5/156
Si Mg Fe Mn Zn Ti Cu O Al
9.34 0.34 0.38 0.15 0.052 0.036 < 0.03 0.046 Bal
Table 1  AlSi10Mg粉末化学成分(质量分数/%)
Fig.1  AlSi10Mg合金粉末形貌
Temperature/℃ Time/min
200 120
300 5, 15, 30, 60, 120
400 120
500 5, 15, 30, 60, 120
Table 2  热处理制度
Fig.2  SLM成形AlSi10Mg试样显微组织
(a)宏观熔池;(b)沉积层形;(c)细晶区;(d)熔池不同区域
Fig.3  SLM成形AlSi10Mg合金宏观元素分布
(a)选区宏观组织;(b)Al;(c)Si;(d)Mg
Fig.4  SLM成形AlSi10Mg微观元素分布
(a)微观组织;(b)Al;(c)Si;(d)Mg
Fig.5  SLM成形AlSi10Mg合金在不同退火温度下的低倍(1)、高倍(2)显微组织图及Si颗粒尺寸分布(3)
(a)200 ℃×120 min;(b)300 ℃×120 min;(c)400 ℃×120 min;(d)500 ℃×120 min
Fig.6  SLM成形AlSi10Mg合金在不同退火时间下的低倍(1)、高倍(2)微观组织图及Si颗粒尺寸分布(3)(T=300 ℃)
(a)5 min;(b)15 min;(c)30 min;(d)60 min;(e)120 min
Fig.7  SLM成形AlSi10Mg合金在不同退火时间下的低倍(1)、高倍(2)微观组织图及Si颗粒尺寸分布(3)(T=500 ℃)
(a)5 min;(b)15 min;(c)30 min;(d)60 min;(e)120 min
Fig.8  退火过程中共晶组织形貌演化示意图
State Ultimate tensile strength/MPa Yield strength/MPa Elongation/ %
As-deposited 398.5±11.5 264.5±3.5 4.3±0.2
300 ℃×60 min 287.0±5 176.5±0.5 10.3±0.7
500 ℃×60 min 268.0±2 146.5±1.5 17.2±0.3
Table 3  激光选区熔化成形AlSi10M合金在不同退火温度下的力学性能
1 YAVARI S A , WAUTHLE R , STOK J V D , et al. Fatigue behavior of porous biomaterials manufactured using selective laser melting[J]. Materials Science and Engineering: C, 2013, 33 (8): 4849- 4858.
doi: 10.1016/j.msec.2013.08.006
2 KE Y , MA P , MA Y C , et al. Microstructure and mechanical properties of AlSil0Mg alloy fabricated by selective laser melting[J]. Applied Laser, 2019, 39 (2): 198- 203.
3 LIN X , HUANG W D . Laser additive manufacturing of high-performance metal components[J]. Science in China(Information Sciences), 2015, 45 (9): 1111- 1126.
4 MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
5 DEBROY T , WEI H L , ZUBACK J S , et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92, 112- 224.
doi: 10.1016/j.pmatsci.2017.10.001
6 KEMPEN K , THIJS L , HUMBEECK J V , et al. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia, 2012, 39, 439- 446.
doi: 10.1016/j.phpro.2012.10.059
7 LOUVIS E , FOX P , SUTCLIFFE C J . Selective laser melting of aluminium components[J]. Journal of Materials Processing Tech, 2011, 211 (2): 275- 284.
doi: 10.1016/j.jmatprotec.2010.09.019
8 THIJS L , KEMPEN K , KRUTH J P , et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61 (5): 1809- 1819.
doi: 10.1016/j.actamat.2012.11.052
9 ZHANG W , ZHU H , HU Z H , et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53 (8): 918- 926.
10 ROSENTHAL I , STERN A , FRAGE N . Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metallography Microstructure and Analysis, 2014, 3 (6): 448- 453.
doi: 10.1007/s13632-014-0168-y
11 YAN Q T , TANG P J , CHEN B Q , et al. Effect of annealing temperature on microstructure and tensile properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56 (8): 37- 45.
doi: 10.3901/JME.2020.08.037
12 LI W , LI S , LIU J , et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science and Engineering: A, 2016, 663, 116- 125.
doi: 10.1016/j.msea.2016.03.088
13 YU K B , LIU Y Z , YANG C Y . Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23 (3): 298- 305.
14 ABOULKHAIR N T , MASKERY I , TUCK C , et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment[J]. Materials Science and Engineering: A, 2016, 667, 139- 146.
doi: 10.1016/j.msea.2016.04.092
15 FIOCCHI J , TUISSI A , BASSANI P , et al. Low temperature annealing dedicated to AlSi10Mg selective laser melting products[J]. Journal of Alloys and Compounds, 2017, 695, 3402- 3409.
doi: 10.1016/j.jallcom.2016.12.019
16 GU D D , MEINERS W , WISSENBACH K , et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2013, 57 (3): 133- 164.
17 LI R D , YU H P , GU K C , et al. Quantitative metallographic analysis for morphology change of eutectic silicon in Al-Si-Cu-Mg hypoeutectic casting alloy during the solution heat treatment[J]. Foundry, 1997, (6): 1- 5.
18 YAN C X , ZHANG H D , YU B Y , et al. Effects of selective laser melting and heat treatment on microstructures and properties of AlSi10Mg alloys[J]. Special Casting & Nonferrous Alloys, 2020, 40 (2): 160- 164.
[1] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[2] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[3] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[4] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[5] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[6] 卢国锋, 乔生儒. 具有莫来石界面的C/Si-C-N复合材料热物理性能[J]. 材料工程, 2021, 49(9): 135-141.
[7] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[8] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[9] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[10] 刘艳芬, 张学习, 沈红先, 孙剑飞, 温亚芹, 王欢, 任晓辉, 阴爽. Ni50.1Mn24.1Ga20.3Fe5.5形状记忆合金多晶纤维的双程形状记忆效应[J]. 材料工程, 2021, 49(3): 41-47.
[11] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[12] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[13] 杨博, 李广荣, 徐彤, 杨冠军. 大气等离子喷涂环境障涂层的预热处理致密化方法[J]. 材料工程, 2021, 49(11): 116-124.
[14] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[15] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn