Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 159-168    DOI: 10.11868/j.issn.1001-4381.2020.001140
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响
刘雄飞1, 杜文博1,*(), 付军健1, 王云峰2, 李淑波1, 朱训明2, 王朝辉1
1 北京工业大学 材料与制造学部, 北京 100124
2 威海万丰镁业科技发展有限公司, 山东 威海 264209
Effect of Gd on microstructure and corrosion behavior of Mg-xGd-1Er-1Zn-0.6Zr alloys
Xiongfei LIU1, Wenbo DU1,*(), Junjian FU1, Yunfeng WANG2, Shubo LI1, Xunming ZHU2, Zhaohui WANG1
1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 Weihai Wanfeng Auto Holding Group Co., Ltd., Weihai 264209, Shandong, China
全文: PDF(1235 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用重力铸造法制备Gd含量分别为7%(质量分数,下同),9%和11%的Mg-xGd-1Er-1Zn-0.6Zr合金,利用光学显微镜、扫描电镜和X射线衍射仪等研究合金的显微组织,通过开路电位、动电位极化和电化学阻抗测试等方法研究合金在3.5%NaCl溶液中的腐蚀行为。结果表明:当Gd含量从7%增至11%时,开路电位峰值时间从1609 s降为851 s,电荷转移电阻从588.5 Ω降至31.9 Ω,腐蚀电流密度从2.21×10-5 A/cm2增至3.97×10-5 A/cm2,说明随着Gd含量的增加,合金耐蚀性下降,这主要归因于第二相的微电偶腐蚀效应和腐蚀屏障效应共同作用。当Gd含量从7%增至11%时,(Mg, Zn)3(Gd, Er)相体积分数从1.9%增至5.2%,并从沿晶界不连续分布转变为半连续分布,层片状LPSO相体积分数从11.7%增至26.7%,并沿着晶界贯穿晶粒内部,(Mg, Zn)3(Gd, Er)相和层片状LPSO相体积分数的增加导致合金耐腐蚀性能下降,但大量细小层状LPSO相也能阻止腐蚀扩展,使得Gd含量为11%的合金在8~24 h内腐蚀速率增长减缓。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雄飞
杜文博
付军健
王云峰
李淑波
朱训明
王朝辉
关键词 Mg-Gd-Er-Zn-Zr合金微电偶腐蚀腐蚀屏障第二相显微组织    
Abstract

The Mg-xGd-1Er-1Zn-0.6Zr alloys with Gd contents of 7%(mass fraction), 9% and 11% were prepared by gravity casting method.The microstructure of the alloys was studied by means of optical microscope, scanning electron microscope and X-ray diffractometer.The corrosion behavior of the alloys were evaluated by means of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy measurements in 3.5%NaCl solution.The results show that when Gd content increases from 7% to 11%, the peak time of open circuit potential decreases from 1609 s to 851 s, the charge transfer resistance decreases from 588.50 Ω to 31.9 Ω, the corrosion current density increases from 2.21×10-5 A/cm2 to 3.97×10-5 A/cm2, indicating that the corrosion resistance of the alloys decreases with the increase of Gd content.It is attributed to the combined operation of the micro-galvanic corrosion effect as well as corrosion barrier effect of second phase.When the Gd content increases from 7% to 11%, the volume fraction of (Mg, Zn)3(Gd, Er) phase increases from 1.9% to 5.2%, and changes from discontinuous distribution to semi-continuous distribution along grain boundaries, the volume fraction of the lamellar-shape LPSO phase increases from 11.7% to 26.7% and penetrates into grains.The increase in the volume fraction of the (Mg, Zn)3(Gd, Er) phase and the lamellar-shape LPSO phase results in the decrease of corrosion resistance, however, a large number of fine lamellar-shape LPSO phases is able to prevent the corrosion from spreading and slow down the growth of corrosion rate of the alloy with 11%Gd content in 8-24 h.

Key wordsMg-Gd-Er-Zn-Zr alloy    micro-galvanic corrosion    corrosion barrier    second phase    micro-structure
收稿日期: 2020-12-16      出版日期: 2022-09-20
中图分类号:  TG146.2  
基金资助:国家重点研发计划(2016YFB0301101);国家重点研发计划(2016YFB0301001);北京市教委重点课题(KZ201810005005)
通讯作者: 杜文博     E-mail: duwb@bjut.edu.cn
作者简介: 杜文博(1964—),男,教授,博士,主要从事高性能镁合金及镁基复合材料研究,联系地址:北京市朝阳区平乐园100号北京工业大学材料与制造学部(100124),E-mail: duwb@bjut.edu.cn
引用本文:   
刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
Xiongfei LIU, Wenbo DU, Junjian FU, Yunfeng WANG, Shubo LI, Xunming ZHU, Zhaohui WANG. Effect of Gd on microstructure and corrosion behavior of Mg-xGd-1Er-1Zn-0.6Zr alloys. Journal of Materials Engineering, 2022, 50(9): 159-168.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001140      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/159
Alloy Nominal composition Actual composition
Mg Gd Er Zn Zr
A Mg-7Gd-1Er-1Zn-0.6Zr Bal 6.66 1.35 1.24 0.73
B Mg-9Gd-1Er-1Zn-0.6Zr Bal 8.80 1.21 1.26 0.68
C Mg-11Gd-1Er-1Zn-0.6Zr Bal 10.76 1.11 1.07 0.81
Table 1  三种合金的名义成分与实际成分(质量分数/%)
Fig.1  铸态Mg-xGd-1Er-1Zn-0.6Zr合金的X射线衍射图谱
Fig.2  铸态Mg-xGd-1Er-1Zn-0.6Zr合金光学显微组织
(a)合金A;(b)合金B;(c)合金C
Fig.3  铸态Mg-xGd-1Er-1Zn-0.6Zr合金的SEM图
(a)合金A;(b)合金B;(c)合金C
Alloy Point Mg Gd Er Zn Zr
A 1 99.64 0.20 0.10 0.02 0.04
2 92.04 4.32 0.48 3.14 0.02
3 98.01 1.43 0.26 0.28 0.02
B 4 79.92 12.10 0.81 7.17
5 99.37 0.35 0.12 0.16
C 6 82.85 11.37 0.40 5.38
7 99.18 0.60 0.08 0.12 0.02
Table 2  图 3各点对应的EDS结果(原子分数/%)
Fig.4  铸态Mg-xGd-1Er-1Zn-0.6Zr合金在3.5%NaCl溶液中的开路电位变化
Fig.5  铸态Mg-xGd-1Er-1Zn-0.6Zr合金在3.5%NaCl溶液中的电化学阻抗谱
(a)Nyquist图;(b)Bode图
Fig.6  铸态Mg-xGd-1Er-1Zn-0.6Zr合金电化学阻抗谱的等效电路
(a)合金A;(b)合金B和合金C
Alloy Rs/(Ω·cm2) Y0/(Ω-1·cm-2·sn) n Rct/(Ω·cm2) Cf/(F·cm-2) Rf/(Ω·cm2) L/(H·cm-2) RL/(Ω·cm2)
A 9.95 1.30×10-5 0.94 588.50 2.83×10-3 16.75
B 7.18 1.45×10-5 0.93 322.70 4.91×10-2 3.70 102.70 2697.00
C 7.28 1.11×10-5 0.95 31.91 2.74×10-6 151.11 42.16 1089.00
Table 3  铸态Mg-xGd-1Er-1Zn-0.6Zr合金电化学阻抗谱拟合结果
Fig.7  铸态Mg-xGd-1Er-1Zn-0.6Zr合金的动态电位极化曲线
Alloy ba/(V·dec) bc/(V·dec) Ecorr/V icorr/(A·cm-2) Rp
A 0.29 0.16 -1.53 2.21×10-5 2016.30
B 0.29 0.17 -1.55 3.76×10-5 1233.80
C 0.13 0.21 -1.49 3.97×10-5 874.80
Table 4  铸态Mg-xGd-1Er-1Zn-0.6Zr合金的电化学参数
Fig.8  合金A在3.5%NaCl溶液中浸泡不同时间后带有腐蚀产物的表面形貌
(a)0 h;(b)1 h;(c)4 h;(d)14 h
Fig.9  合金A在3.5%NaCl溶液中浸泡不同时间后带有腐蚀产物的SEM图
(a)1 h;(b)4 h
Point Mg O Gd Er Zn
1 67.91 31.34 0.51 0.10 0.14
2 71.49 25.98 1.66 0.27 0.60
3 34.43 65.40 0.17
Table 5  图 9各点对应的EDS结果(原子分数/%)
Fig.10  铸态Mg-xGd-1Er-1Zn-0.6Zr合金在3.5%NaCl溶液中浸泡8 h后腐蚀产物的XRD谱图
Fig.11  铸态Mg-xGd-1Er-1Zn-0.6Zr合金在3.5%NaCl溶液中浸泡不同时间后去掉腐蚀产物的腐蚀形貌
(a)合金A;(b)合金B;(c)合金C;(1)1 h;(2)14 h;(3)24 h
Fig.12  铸态Mg-xGd-1Er-1Zn-0.6Zr合金失重腐蚀速率
Fig.13  铸态Mg-xGd-1Er-1Zn-0.6Zr合金随浸泡时间延长的腐蚀机理示意图
1 WANG Q D , CHEN Y , LIU M P , et al. Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression[J]. Materials Science and Engineering: A, 2010, 527 (9): 2265- 2273.
doi: 10.1016/j.msea.2009.11.065
2 AHMADHANIHA D , JARVENPAA A , JASKARI M , et al. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties[J]. Journal of the Mechanical Beha-vior of Biomedical Materials, 2016, 61, 360- 370.
doi: 10.1016/j.jmbbm.2016.04.015
3 ZHAO M C , SCHMUTZ P , BRUNNER S , et al. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing[J]. Corrosion Science, 2009, 51 (6): 1277- 1292.
doi: 10.1016/j.corsci.2009.03.014
4 WANG J S , LI X B . Simultaneously improving strength and ductility of AZ91-type alloys with minor Gd addition[J]. Journal of Alloys and Compounds, 2019, 803, 689- 699.
doi: 10.1016/j.jallcom.2019.06.313
5 ZHANG T , SHAO Y W , MENG G Z , et al. Corrosion of hot extrusion AZ91 magnesium alloy: Ⅰ-relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53 (5): 1960- 1968.
doi: 10.1016/j.corsci.2011.02.015
6 LI J L , CHEN R S , KE W . Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam cas-ting[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (4): 761- 766.
doi: 10.1016/S1003-6326(11)60777-2
7 LIANG S Q , GUAN D K , TAN X P . The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy[J]. Materials & Design, 2011, 32 (3): 1194- 1199.
8 WANG D , WU H J , WU R Z , et al. The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr and its response to the mechanical properties and damping capacities[J]. Journal of Magnesium and Alloys, 2020, 8 (3): 793- 798.
doi: 10.1016/j.jma.2019.10.003
9 RAMEZANI S , ZAREI-HANZAKI A , ABEDI H R , et al. Achie-vement of fine-grained bimodal microstructure and superior mechanical properties in a multi-axially forged GWZ magnesium alloy containing LPSO structures[J]. Journal of Alloys and Compounds, 2019, 793, 134- 145.
doi: 10.1016/j.jallcom.2019.04.158
10 ZHANG J S , XU J D , CHENG W L , et al. Corrosion behavior of Mg-Zn-Y alloy with long-period stacking ordered structures[J]. Journal of Materials Science and Technology, 2012, 28 (12): 1157- 1162.
doi: 10.1016/S1005-0302(12)60186-8
11 BAO L , ZHANG Z Q , LE Q C , et al. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios[J]. Journal of Alloys and Compounds, 2017, 712, 15- 23.
doi: 10.1016/j.jallcom.2017.04.053
12 ZHANG J Y , XU M , TENG X Y , et al. Effect of Gd addition on microstructure and corrosion behaviors of Mg-Zn-Y alloy[J]. Journal of Magnesium and Alloys, 2016, 4, 319- 325.
doi: 10.1016/j.jma.2016.09.003
13 BI G L , JIANG J , ZHANG F , et al. Microstructure evolution and corrosion properties of Mg-Dy-Zn alloy during cooling after solution treatment[J]. Journal of Rare Earths, 2016, 34 (9): 931- 937.
doi: 10.1016/S1002-0721(16)60117-5
14 JIA L Y , DU W B , WANG Z H , et al. Dual phases strengthening behavior of Mg-10Gd-1Er-1Zn-0.6Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (3): 635- 646.
doi: 10.1016/S1003-6326(20)65242-6
15 WEN K , DU W B , LIU K , et al. Precipitation behavior of 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0.6Zr alloy[J]. Rare Me-tals, 2016, 35 (5): 367- 373.
doi: 10.1007/s12598-015-0555-9
16 王保杰, 姜春龙, 李传强, 等. 镁锂合金腐蚀行为研究进展[J]. 航空材料学报, 2019, 39 (1): 1- 8.
16 WANG B J , JIANG C L , LI C Q , et al. Research progress on corrosion behavior of magnesium-lithium alloys[J]. Journal of Aeronautical Materials, 2019, 39 (1): 1- 8.
17 LI B , TENG B G , CHEN G X , et al. Microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy during equal channel angular pressing[J]. Materials Science and Engineering: A, 2019, 744, 396- 405.
doi: 10.1016/j.msea.2018.12.024
18 WANG L , ZHANG B P , SHINOHARA T , et al. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions[J]. Materials & Design, 2010, 31 (2): 857- 863.
19 SONG Y W , SHAN D Y , CHEN R S , et al. Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corrosion Science, 2009, 51 (5): 1087- 1094.
doi: 10.1016/j.corsci.2009.03.011
20 ZUCCHI F , GRASSI V , FRIGNANI A , et al. Electrochemical behaviour of a magnesium alloy containing rare earth elements[J]. Journal of Applied Electrochemistry, 2006, 36 (2): 195- 204.
doi: 10.1007/s10800-005-9053-3
21 林梦晓, 张杰, 蒋全通, 等. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48 (1): 98- 107.
21 LIN M X , ZHANG J , JIANG Q T , et al. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater[J]. Journal of Materials Engineering, 2020, 48 (1): 98- 107.
22 王力, 董超芳, 张达威, 等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56 (1): 119- 128.
22 WANG L , DONG C F , ZHANG D W , et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in Bangkok, Thailand[J]. Acta Metallurgica Sinica, 2020, 56 (1): 119- 128.
23 BARIL G , BLANC C , PÉBÈRE N . AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys—characterization with respect to their microstructures[J]. Journal of the Electrochemical Society, 2001, 148 (12): B489- B496.
doi: 10.1149/1.1415722
24 张帅, 李全安, 朱宏喜, 等. Ca对Mg-11Gd-3Y-0.5Zr合金显微组织和耐蚀性的影响[J]. 材料热处理学报, 2019, 40 (8): 17- 23.
24 ZHANG S , LI Q A , ZHU H X , et al. Effect of Ca on microstructure and corrosion resistance of Mg-11Gd-3Y-0.5Zr alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40 (8): 17- 23.
25 AMBAT R , AUNG N , ZHOU W . Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42 (8): 1433- 1455.
doi: 10.1016/S0010-938X(99)00143-2
26 JONSSON M , PERSSON D , GUBNER R . The initial steps of atmospheric corrosion on magnesium alloy AZ91D[J]. Journal of the Electrochemical Society, 2007, 154 (11): C684- C691.
doi: 10.1149/1.2779957
27 LIU J , YANG L X , ZHANG C Y , et al. Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: effect of heat-treatment[J]. Journal of Materials Science and Technology, 2019, 35 (8): 1644- 1654.
doi: 10.1016/j.jmst.2019.03.027
28 LIU X , XUE J L , ZHANG D . Electrochemical behaviors and discharge performance of the as-extruded Mg-1.5wt%Ca alloys as anode for Mg-air battery[J]. Journal of Alloys and Compounds, 2019, 790, 822- 828.
doi: 10.1016/j.jallcom.2019.03.260
[1] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[2] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[3] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[4] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[5] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[6] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[7] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[8] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
[9] 陈枫, 刘佩文, 许贤福, 田兵, 佟运祥, 李莉. Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响[J]. 材料工程, 2021, 49(3): 20-30.
[10] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[11] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[12] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[13] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[14] 吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
[15] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn